239 research outputs found

    Differentiation and localization of targets using infrared sensors

    Get PDF
    Cataloged from PDF version of article.This study investigates the use of low-cost infrared emitters and detectors in the differentiation and localization of commonly encountered features or targets in indoor environments, such as planes, corners, edges, and cylinders. The intensity readings obtained with such systems are highly dependent on target location and properties in a way which cannot be represented in a simple manner, making the differentiation and localization process difficult. In this paper, we propose the use of angular intensity scans and present an algorithm to process them. This approach can determine the target type independent of its position. Once the target type is identified, its position can also be estimated. The method is verified experimentally. An average correct classification rate of 97% over all target types is achieved and targets are localized within absolute range and azimuth errors of 0.8 cm and 1.6 , respectively. The method demonstrated shows that simple infrared sensors, when coupled with appropriate processing, can be used to extract a significantly greater amount of information than that which they are commonly employed for. (C) 2002 Elsevier Science B.V. All rights reserve

    Target differentiation with simple infrared sensors using statistical pattern recognition techniques

    Get PDF
    Cataloged from PDF version of article.This study compares the performances of various statistical pattern recognition techniques for the differentiation of commonly encountered features in indoor environments, possibly with different surface properties, using simple infrared (IR) sensors. The intensity measurements obtained from such sensors are highly dependent on the location, geometry, and surface properties of the reflecting feature in a way that cannot be represented by a simple analytical relationship, therefore complicating the differentiation process. We construct feature vectors based on the parameters of angular IR intensity scans from different targets to determine their geometry and/or surface type. Mixture of normals classifier with three components correctly differentiates three types of geometries with different surface properties, resulting in the best performance (100%) in geometry differentiation. Parametric differentiation correctly identifies six different surface types of the same planar geometry, resulting in the best surface differentiation rate (100%). However, this rate is not maintained with the inclusion of more surfaces. The results indicate that the geometrical properties of the targets are more distinctive than their surface properties, and surface recognition is the limiting factor in differentiation. The results demonstrate that simple IR sensors, when coupled with appropriate processing and recognition techniques, can be used to extract substantially more information than such devices are commonly employed for. (C) 2007 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserve

    Polylactic acid (PLA)/Silver-NP/VitaminE bionanocomposite electrospun nanofibers with antibacterial and antioxidant activity

    Get PDF
    Cataloged from PDF version of article.The antibacterial property of silver nanoparticles (Ag-NPs) and the antioxidant activity of Vitamin E have been combined by incorporation of these two active components within polylactic acid (PLA) nanofibers via electrospinning (PLA/Ag-NP/VitaminE nanofibers). The morphological and structural characterizations of PLA/Ag-NP/VitaminE nanofibers were performed by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy and X-ray diffraction. The average fiber diameter was 140 ± 60 nm, and the size of the Ag-NP was 2.7 ± 1.5 nm. PLA/Ag-NP/VitaminE nanofibers inhibited growth of Escherichia coli, Listeria monocytogenes and Salmonella typhymurium up to 100 %. The amount of released Ag ions from the nanofibers immersed in aqueous solution was determined by Inductively Coupled Plasma Mass Spectrometry, and it has been observed that the release of Ag ions was kept approximately constant after 10 days of immersion. The antioxidant activity of PLA/Ag-NP/VitaminE nanofibers was evaluated according to DPPH (2,2-diphenyl-1-picrylhydrazyl) method and determined as 94 %. The results of the tests on fresh apple and apple juice indicated that the PLA/Ag/VitaminE nanofiber membrane actively reduced the polyphenol oxidase activity. The multifunctional electrospun PLA nanofibers incorporating Ag-NP and Vitamin E may be quite applicable in food packaging due to the extremely large surface area of nanofibers along with antibacterial and antioxidant activities. These materials could find application in food industry as a potential preservative packaging for fruits and juices. © 2014, Springer Science+Business Media Dordrecht

    Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

    Get PDF
    We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness. © 2015 Springer-Verlag Berlin Heidelberg

    Grain boundary engineering in electrospun ZnO nanostructures as promising photocatalysts

    Get PDF
    Electrospun ZnO nanofibers (ZNF) have received increased attention as photocatalysts owing to their potential for incredible performance. However, uncertainty still exists in determining the correlation between grain boundaries (GBs) and photocatalytic activity. Therefore, effective thought has been put into engineering the GBs to convert ZNF into a promising photocatalyst. Herein, the obtained electrospun ZnO structures are composed of nanograins, which are connected to each other in an ordered manner. In-depth studies have revealed that the growth of nanograins severely altered the morphology of ZNF and GB areas at higher annealing temperatures ranging from 500 °C to 1000 °C. Based on the morphological features and their structural evolution, the obtained structures are named as ZnO nanofibers-1 (ZNF-1, 500 °C), ZnO hollow tubes (ZHT, 600 °C), ZnO nanofibers-2 (ZNF-2, 700 °C), ZnO bamboo structured fibers (ZBF, 800 °C), ZnO segmented fibers (ZSF, 900 °C) and ZnO nanoparticles (ZNP, 1000 °C). A strong correlation between the inherent emission features of ZNF and their peak positions have been detected with the GB. The comparative degradation efficiency of methylene blue (MB) has been studied and the results showed that the ZNF-1 with highly stacked nanograins containing rich grain boundaries demonstrated ∼6 times higher efficiency than other structures. In addition, it has been shown to have a strong effect towards the degradation of Rhodamine B (Rh B) and 4-nitro-phenol (4-NP). A critical parameter for improving the photocatalytic activity is found to be the GB mediated defects, which are proposed to be oxygen/zinc vacancies at nanograin fusion interfaces, while supposedly maintaining its fibrous structure, wherein no relationship has been drawn implying the direct domination of morphology, surface area and defect. © 2016 The Royal Society of Chemistry

    Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2

    Get PDF
    We report herein a flexible fluorescent nanofibrous membrane (FNFM) prepared by decorating the gold nanocluster (AuNC) on electrospun polysulfone nanofibrous membrane for rapid visual colorimetric detection of H2O2. The provision of AuNC coupled to NFM has proven to be advantageous for facile and quick visualization of the obtained results, permitting instant, selective, and on-site detection. We strongly suggest that the fast response time is ascribed to the enhanced probabilities of interaction with AuNC located at the surface of NF. It has been observed that the color change from red to blue is dependent on the concentration, which is exclusively selective for hydrogen peroxide. The detection limit has been found to be 500 nM using confocal laser scanning microscope (CLSM), visually recognizable with good accuracy and stability. A systematic comparison was performed between the sensing performance of FNFM and AuNC solution. The underlying sensing mechanism is demonstrated using UV spectra, transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The corresponding disappearance of the characteristic emissions of gold nanoclusters and the emergence of a localized surface plasmon resonance (LSPR) band, stressing this unique characteristic of gold nanoparticles. Hence, it is evident that the conversion of nanoparticles from nanoclusters has taken place in the presence of H2O2. Our work here has paved a new path for the detection of bioanalytes, highlighting the merits of rapid readout, sensitivity, and user-friendliness. © 2015 Springer-Verlag Berlin Heidelberg

    Finite temperature quantum simulation of stabilizer Hamiltonians

    Full text link
    We present a scheme for robust finite temperature quantum simulation of stabilizer Hamiltonians. The scheme is designed for realization in a physical system consisting of a finite set of neutral atoms trapped in an addressable optical lattice that are controllable via 1- and 2-body operations together with dissipative 1-body operations such as optical pumping. We show that these minimal physical constraints suffice for design of a quantum simulation scheme for any stabilizer Hamiltonian at either finite or zero temperature. We demonstrate the approach with application to the abelian and non-abelian toric codes.Comment: 13 pages, 2 figure

    Cecum perforation due to tuberculosis in a renal transplant recipient: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Tuberculosis can present in many varied clinical situations in immunosuppressed patients. It has been reported that the sigmoid colon is the most common site for colonic perforation in renal transplant recipients and diverticulitis is its most common cause. Cecal perforation because of tuberculosis is extremely rare in a renal transplant recipient. We present the case of a renal transplant patient with cecal perforation due to tuberculosis, 10 years after renal transplantation.</p> <p>Case presentation</p> <p>A 39-year-old Caucasian man, who was a renal transplant recipient, was admitted to our emergency surgery unit with an acute abdomen. A cecal perforation was found at exploratory laparotomy, and a right hemicolectomy with an end ileostomy and transverse colonic mucous fistula were performed. Necrotizing granulomatous colitis due to tuberculosis was reported in the histopathologic examination.</p> <p>Conclusion</p> <p>Colonic perforations in immunosuppressed patients may have unusual presentations and unusual causes. Tuberculosis infection should be considered in the differential diagnosis during the histopathologic evaluation in immunocompromised patients such as renal transplant recipients.</p

    Clinicopathologic features of incidental prostatic adenocarcinoma in radical cystoprostatectomy specimens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study is to review all features of incidentally discovered prostate adenocarcinoma in patients undergoing radical cystoprostatectomy for bladder cancer.</p> <p>Methods</p> <p>The medical charts of 300 male patients who underwent radical cystoprostatectomy for bladder cancer between 1997 and 2005 were retrospectively reviewed. The mean age of the patients was 62 (range 51-75) years.</p> <p>Results</p> <p>Prostate adenocarcinoma was present in 60 (20%) of 300 specimens. All were acinar adenocarcinoma. Of these, 40 (66.7%) were located in peripheral zone, 20 (33.3%) had pT2a tumor, 12 (20%) had pT2b tumor, 22(36.7%) had pT2c and, 6 (10%) had pT3a tumor. Gleason score was 6 or less in 48 (80%) patients. Surgical margins were negative in 54 (90%) patients, and tumor volume was less than 0.5 cc in 23 (38.3%) patients. Of the 60 incidentally detected cases of prostate adenocarcinoma 40 (66.7%) were considered clinically significant.</p> <p>Conclusion</p> <p>Incidentally detected prostate adenocarcinoma is frequently observed in radical cystoprostatectomy specimens. The majority are clinically significant.</p
    • …
    corecore