97 research outputs found

    Detection of in situ cleaved p115 with the cut specific antibodies in rapid protein inactivation system by tobacco etch viral protease cleavage

    Get PDF
    Gene perturbation methods are commonly used in the study of gene and protein function. The authors of this paper recently developed a rapid protein inactivation technique utilizing tobacco etch virus (TEV)-derived protease. TEV protease recognizes the ENLYFQG (Glu-Asn-Leu-Tyr-Phe-Gln-Gly) amino acid sequence and specifically cleaves between Q and G. The authors developed antibodies that recognize the cleaved TEV (ENLYFQ) sequence, both in vitro and in vivo, but do not bind to uncleaved TEV (ENLYFQG). Using these antibodies, in situ protein cleavage was successfully detected. These antibodies used in combination with the TEV protease may be a useful complement to other perturbation methods

    Development of an experimental method of systematically estimating protein expression limits in HEK293 cells

    Get PDF
    Protein overexpression sometimes causes cellular defects, although the underlying mechanism is still unknown. A protein's expression limit, which triggers cellular defects, is a useful indication of the underlying mechanism. In this study, we developed an experimental method of estimating the expression limits of target proteins in the human embryonic kidney cell line HEK293 by measuring the proteins' expression levels in cells that survived after the high-copy introduction of plasmid DNA by which the proteins were expressed under a strong cytomegalovirus promoter. The expression limits of nonfluorescent target proteins were indirectly estimated by measuring the levels of green fluorescent protein (GFP) connected to the target proteins with the self-cleaving sequence P2A. The expression limit of a model GFP was similar to 5.0% of the total protein, and sustained GFP overexpression caused cell death. The expression limits of GFPs with mitochondria-targeting signals and endoplasmic reticulum localization signals were 1.6% and 0.38%, respectively. The expression limits of four proteins involved in vesicular trafficking were far lower compared to a red fluorescent protein. The protein expression limit estimation method developed will be valuable for defining toxic proteins and consequences of protein overexpression

    Absence of Nogo-B (Reticulon 4B) Facilitates Hepatic Stellate Cell Apoptosis and Diminishes Hepatic Fibrosis in Mice

    Get PDF
    Nogo-B (reticulon 4B) accentuates hepatic fibrosis and cirrhosis, but the mechanism remains unclear. The aim of this study was to identify the role of Nogo-B in hepatic stellate cell (HSC) apoptosis in cirrhotic livers. Cirrhosis was generated by carbon tetrachloride inhalation in wild-type (WT) and Nogo-A/B knockout (Nogo-B KO) mice. HSCs were isolated from WT and Nogo-B KO mice and cultured for activation and transformation to myofibroblasts (MF-HSCs). Human hepatic stellate cells (LX2 cells) were used to assess apoptotic responses of activated HSCs after silencing or overexpressing Nogo-B. Livers from cirrhotic Nogo-B KO mice showed significantly reduced fibrosis (P < 0.05) compared with WT mice. Apoptotic cells were more prominent in fibrotic areas of cirrhotic Nogo-B KO livers. Nogo-B KO MF-HSCs showed significantly increased Levels of apoptotic markers, cleaved poly (ADP-ribose) polymerase, and caspase-3 and -8 (P < 0.05) compared with WT MF-HSCs in response to staurosporine. Treatment with tunicamycin, an endoplasmic reticulum stress inducer, increased cleaved caspase-3 and -8 levels in Nogo-B KO MF-HSCs compared with WT MF-HSCs (P < 0.01). In LX2 cells, Nogo-B knockdown enhanced apoptosis in response to staurosporine, whereas Nogo-B overexpression inhibited apoptosis. The absence of Nogo-B enhances apoptosis of HSCs in experimental cirrhosis. Selective blockade of Nogo-B in HSCs may represent a potential therapeutic strategy to mitigate liver fibrosis. (Am J Pathol 2013, 182: 786-795; http://dx.doLorg/10.1016Aajpath.2012.11.032

    Evaluation of skin sensitization based on interleukin‑2 promoter activation in Jurkat cells

    Get PDF
    Skin sensitization is an allergic reaction caused by certain chemical substances, and is an important factor to be taken into consideration when evaluating the safety of numerous types of products. Although animal testing has long been used to evaluate skin sensitization, the recent trend to regulate such testing has led to the development and use of alternative methods. Skin sensitization reactions are summarized in the form of an adverse outcome pathway consisting of four key events (KE), including covalent binding to skin proteins (KE1), keratinocyte activation (KE2), and dendritic cell activation (KE3). Equivalent alternative methods have been developed for KE1 to KE3, but no valid alternative has yet been developed for the evaluation of KE4 and T‑cell activation. Current alternative methods rely on data from KE1 to KE3 to predict the effect of chemicals on skin sensitization. The addition of KE4 data is expected to improve the accuracy and reproducibility of such predictions. The aim of this study was to establish an assay to evaluate KE4 T‑cell activation to supplement data on skin sensitization related to KE4. To evaluate T‑cell activation, the Jurkat T‑cell line stably expressing luciferase downstream of the pro‑inflammatory cytokine interleukin‑2 promoter was used. After exposure to known skin sensitizing agents and control substances, luciferase activity measurements revealed that this assay was valid for evaluating skin sensitization. However, two skin sensitizers known to have immunosuppressive effects on T‑cells reacted negatively in this assay. The results revealed that this assay simultaneously allows for monitoring of the skin sensitization and immuno‑suppressiveness of chemical substances and supplements KE4 T‑cell activation data, and may thus contribute to reducing the use of animal experiments

    Correction

    Get PDF

    VCIP135 acts as a deubiquitinating enzyme during p97–p47-mediated reassembly of mitotic Golgi fragments

    Get PDF
    The AAA-ATPase p97/Cdc48 functions in different cellular pathways using distinct sets of adapters and other cofactors. Together with its adaptor Ufd1–Npl4, it extracts ubiquitylated substrates from the membrane for subsequent delivery to the proteasome during ER-associated degradation. Together with its adaptor p47, on the other hand, it regulates several membrane fusion events, including reassembly of Golgi cisternae after mitosis. The finding of a ubiquitin-binding domain in p47 raises the question as to whether the ubiquitin–proteasome system is also involved in membrane fusion events. Here, we show that p97–p47-mediated reassembly of Golgi cisternae requires ubiquitin, but is not dependent on proteasome-mediated proteolysis. Instead, it requires the deubiquitinating activity of one of its cofactors, VCIP135, which reverses a ubiquitylation event that occurs during mitotic disassembly. Together, these data reveal a cycle of ubiquitylation and deubiquitination that regulates Golgi membrane dynamics during mitosis. Furthermore, they represent the first evidence for a proteasome-independent function of p97/Cdc48

    Aromatic oil from lavender as an atopic dermatitis suppressant

    Get PDF
    In atopic dermatitis (AD), nerves are abnormally stretched near the surface of the skin, making it sensitive to itching. Expression of neurotrophic factor Artemin (ARTN) involved in such nerve stretching is induced by the xenobiotic response (XRE) to air pollutants and UV radiation products. Therefore, AD can be monitored by the XRE response. Previously, we established a human keratinocyte cell line stably expressing a NanoLuc reporter gene downstream of XRE. We found that 6-formylindolo[3,2-b]carbazole (FICZ), a tryptophan metabolite and known inducer of the XRE, increased reporter and Artemin mRNA expression, indicating that FICZ-treated cells could be a model for AD. Lavender essential oil has been used in folk medicine to treat AD, but the scientific basis for its use is unclear. In the present study, we investigated the efficacy of lavender essential oil and its major components, linalyl acetate and linalool, to suppress AD and sensitize skin using the established AD model cell line, and keratinocyte and dendritic cell activation assays. Our results indicated that lavender essential oil from L. angustifolia and linalyl acetate exerted a strong AD inhibitory effect and almost no skin sensitization. Our model is useful in that it can circumvent the practice of using animal studies to evaluate AD medicines

    The Golgin Tether Giantin Regulates the Secretory Pathway by Controlling Stack Organization within Golgi Apparatus

    Get PDF
    Golgins are coiled-coil proteins that play a key role in the regulation of Golgi architecture and function. Giantin, the largest golgin in mammals, forms a complex with p115, rab1, GM130, and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), thereby facilitating vesicle tethering and fusion processes around the Golgi apparatus. Treatment with the microtubule destabilizing drug nocodazole transforms the Golgi ribbon into individual Golgi stacks. Here we show that siRNA-mediated depletion of giantin resulted in more dispersed Golgi stacks after nocodazole treatment than by control treatment, without changing the average cisternal length. Furthermore, depletion of giantin caused an increase in cargo transport that was associated with altered cell surface protein glycosylation. Drosophila S2 cells are known to have dispersed Golgi stacks and no giantin homolog. The exogenous expression of mammalian giantin cDNA in S2 cells resulted in clustered Golgi stacks, similar to the Golgi ribbon in mammalian cells. These results suggest that the spatial organization of the Golgi ribbon is mediated by giantin, which also plays a role in cargo transport and sugar modifications

    mBet3p is required for homotypic COPII vesicle tethering in mammalian cells

    Get PDF
    TRAPPI is a large complex that mediates the tethering of COPII vesicles to the Golgi (heterotypic tethering) in the yeast Saccharomyces cerevisiae. In mammalian cells, COPII vesicles derived from the transitional endoplasmic reticulum (tER) do not tether directly to the Golgi, instead, they appear to tether to each other (homotypic tethering) to form vesicular tubular clusters (VTCs). We show that mammalian Bet3p (mBet3p), which is the most highly conserved TRAPP subunit, resides on the tER and adjacent VTCs. The inactivation of mBet3p results in the accumulation of cargo in membranes that colocalize with the COPII coat. Furthermore, using an assay that reconstitutes VTC biogenesis in vitro, we demonstrate that mBet3p is required for the tethering and fusion of COPII vesicles to each other. Consistent with the proposal that mBet3p is required for VTC biogenesis, we find that ERGIC-53 (VTC marker) and Golgi architecture are disrupted in siRNA-treated mBet3p-depleted cells. These findings imply that the TRAPPI complex is essential for VTC biogenesis
    corecore