7 research outputs found

    Diabetes Is Associated with Increased Autoreactivity of Mannan-Binding Lectin

    Get PDF
    Mannan-binding lectin (MBL) has been reported to be involved in the pathophysiology of diabetic nephropathy. MBL is a pattern-recognition molecule of the innate immune system that initiates the lectin pathway of the complement system upon recognition of evolutionary conserved pathogen-associated molecular patterns or to altered self-tissue. Our group have previously shown direct effects of MBL on diabetes-induced kidney damage, and we hypothesized that MBL may cause autoactivation of the complement system via binding to neoepitopes induced by hyperglycemia. In the present study, we induced diabetes in MBL knockout mice and in wild type C57BL/6J mice by low-dose streptozotocin injection and measured blood glucose and urine albumin-to-creatinine ratio to monitor development of diabetes. After 24 weeks, fluorescently labelled recombinant MBL was injected intravenously in diabetic MBL knockout mice after which the distribution was investigated using in vivo fluorescence imaging. Mice were subjected to in vivo and ex vivo imaging 24 hours after injection. MBL was found to accumulate in the kidneys of diabetic mice as compared to healthy control mice (p<0.0001). These findings support the hypothesis of a significant role of MBL and the complement system in the pathophysiology of diabetic nephropathy

    Global Autorecognition and Activation of Complement by Mannan-Binding Lectin in a Mouse Model of Type 1 Diabetes

    No full text
    Increasing evidence links mannan-binding lectin (MBL) to late vascular complications of diabetes. MBL is a complement-activating pattern recognition molecule of the innate immune system that can mediate an inflammation response through activation of the lectin pathway. In two recent animal studies, we have shown that autoreactivity of MBL is increased in the kidney in diabetic nephropathy. We hypothesize that long-term exposure to uncontrolled high blood glucose in diabetes may mediate formation of neoepitopes in several tissues and that MBL is able to recognize these structures and thus activate the lectin pathway. To test this hypothesis, we induced diabetes by injection of low-dose streptozotocin in MBL double-knockout (MBL/DKO) mice. Development of diabetes was followed by measurements of blood glucose and urine albumin-to-creatinine ratio. Fluorophore-labelled recombinant MBL was injected intravenously in diabetic and nondiabetic mice followed by ex vivo imaging of several organs. We observed that MBL accumulated in the heart, liver, brain, lung, pancreas, and intestines of diabetic mice. We furthermore detected increased systemic complement activation after administration of MBL, thus indicating MBL-mediated systemic complement activation in these animals. These new findings indicate a global role of MBL during late diabetes-mediated vascular complications in various tissues

    Ficolin B in Diabetic Kidney Disease in a Mouse Model of Type 1 Diabetes

    Get PDF
    Background. The innate immune system may have adverse effects in diabetes and cardiovascular disease. The complement system seems to play a key role through erroneous complement activation via hyperglycaemia-induced neoepitopes. Recently mannan-binding lectin (MBL) was shown to worsen diabetic kidney changes. We hypothesize that mouse ficolin B exerts detrimental effects in the diabetic kidney as seen for MBL. Methods. We induced diabetes with streptozotocin in female wild-type mice and ficolin B knockout mice and included two similar nondiabetic groups. Renal hypertrophy and excretion of urinary albumin and creatinine were quantified to assess diabetic kidney damage. Results. In the wild-type groups, the kidney weighed 24% more in the diabetic mice compared to the controls. The diabetes-induced increase in kidney weight was 29% in the ficolin B knockout mice, that is, equal to wild-type animals (two-way ANOVA, P=0.60). In the wild-type mice the albumin-to-creatinine ratio (ACR) was 32.5 mg/g higher in the diabetic mice compared to the controls. The difference was 62.5 mg/g in the ficolin B knockout mice, but this was not significantly different from the wild-type animals (two-way ANOVA, P=0.21). Conclusions. In conclusion, the diabetes-induced effects on kidney weight and ACR were not modified by the presence or absence of ficolin B

    Criticism of the paper “The association between early career informal mentorship in academic collaborations and junior author performance”

    No full text
    The authors of this letter represent a large student body who have generally had especially positive experiences with female mentors’ advice and mentorships and do not support the conclusions of the article “The association between early career informal mentorship in academic collaborations and junior author performance” because its conclusions regarding gender reach beyond the article’s scope and because the quality of mentorships cannot be analysed only through citation counts. Publications are not equivalent to learning outcomes or professional advancement. After careful review of the aforementioned article, we see numerous scientific flaws. The causal inferences that can be drawn from the observed effects of gender on the mentor-protégé relationship are insubstantial and other aspects of the paper are limited in the reductionist design of their mentor-protégé relationship assessment, which is based on the scientific impact of future papers
    corecore