21 research outputs found

    Finite-size effects in tunneling between parallel quantum wires

    Full text link
    We present theoretical calculations and experimental measurements which reveal finite-size effects in the tunneling between two parallel quantum wires, fabricated at the cleaved edge of a GaAs/AlGaAs bilayer heterostructure. Observed oscillations in the differential conductance, as a function of bias voltage and applied magnetic field, provide direct information on the shape of the confining potential. Superimposed modulations indicate the existence of two distinct excitation velocities, as expected from spin-charge separation.Comment: Accepted to Phys. Rev. Lett. 7/200

    Magnetic-force-microscope study of interlayer "kinks" in individual vortices in underdoped cuprate YBa2_2Cu3_3O6+x_{6+x} superconductor

    Full text link
    We use magnetic force microscopy to both image and manipulate individual vortex lines threading single crystalline YBa2_2Cu3_3O6.4_{6.4}, a layered superconductor. We find that when we pull the top of a pinned vortex, it may not tilt smoothly. Sometimes, we observe a vortex to break into discrete segments that can be described as short stacks of pancake vortices, similar to the "kinked" structure proposed by Benkraouda and Clem. Quantitative analysis gives an estimate of the pinning force and the coupling between the stacks. Our measurements highlight the discrete nature of stacks of pancake vortices in layered superconductors

    Interference and zero-bias anomaly in tunneling between Luttinger-liquid wires

    Full text link
    We present theoretical calculations and experimental measurements which reveal the Luttinger-liquid (LL) nature of elementary excitations in a system consisting of two quantum wires connected by a long narrow tunnel junction at the edge of a GaAs/AlGaAs bilayer heterostructure. The boundaries of the wires are important and lead to a characteristic interference pattern in measurements on short junctions. We show that the experimentally observed modulation of the conductance oscillation amplitude as a function of the voltage bias can be accounted for by spin-charge separation of the elementary excitations in the interacting wires. Furthermore, boundaries affect the LL exponents of the voltage and temperature dependence of the tunneling conductance at low energies. We show that the measured temperature dependence of the conductance zero-bias dip as well as the voltage modulation of the conductance oscillation pattern can be used to extract the electron interaction parameters in the wires.Comment: 17 pages, 12 figure

    Many-body dispersions in interacting ballistic quantum wires

    Full text link
    We have measured the collective excitation spectrum of interacting electrons in one-dimension. The experiment consists of controlling the energy and momentum of electrons tunneling between two clean and closely situated, parallel quantum wires in a GaAs/AlGaAs heterostructure while measuring the resulting conductance. We measure excitation spectra that clearly deviate from the non-interacting spectrum, attesting to the importance of Coulomb interactions. Notable is an observed 30% enhancement of the velocity of the main excitation branch relative to non-interacting electrons with the same density. In short wires, finite size effects resulting from broken translational invariance are observed. Spin - charge separation is manifested through moire patterns, reflecting different spin and charge excitation velocities.Comment: 14 pages, 6 eps figures. To be published in NANOWIRE, a special issue of Solid State Communication
    corecore