6 research outputs found

    Real-time pollen monitoring using digital holography

    Get PDF
    We present the first validation of the SwisensPoleno, currently the only operational automatic pollen mon-itoring system based on digital holography. The device pro-vides in-flight images of all coarse aerosols, and here wedevelop a two-step classification algorithm that uses theseimages to identify a range of pollen taxa. Deterministiccriteria based on the shape of the particle are applied toinitially distinguish between intact pollen grains and othercoarse particulate matter. This first level of discriminationidentifies pollen with an accuracy of 96 %. Thereafter, in-dividual pollen taxa are recognized using supervised learn-ing techniques. The algorithm is trained using data obtainedby inserting known pollen types into the device, and out ofeight pollen taxa six can be identified with an accuracy ofabove 90 %. In addition to the ability to correctly identifyaerosols, an automatic pollen monitoring system needs to beable to correctly determine particle concentrations. To fur-ther verify the device, controlled chamber experiments us-ing polystyrene latex beads were performed. This providedreference aerosols with traceable particle size and numberconcentrations in order to ensure particle size and samplingvolume were correctly characterized

    Traceable PM2.5 and PM10 Calibration of Low-Cost Sensors with Ambient-like Aerosols Generated in the Laboratory

    No full text
    This work builds upon previous efforts at calibrating PM (particulate matter) monitors with ambient-like aerosols produced in the laboratory under well-controlled environmental conditions at the facility known as PALMA (Production of Ambient-like Model Aerosols). In this study, the sampling system of PALMA was equipped with commercial PM2.5 and PM10 impactors, designed according to the EN 12341:2014 standard, to select different aerosol size fractions for reference gravimetric measurements. Moreover, a metallic frame was mounted around the PM impactor to accommodate up to eight low-cost PM sensors. This sampling unit was placed at the bottom of the 2-meter-long aerosol homogenizer, right above the filter holder for the reference gravimetric measurements. As proof of principle, we used the upgraded PALMA facility to calibrate the new AirVisual Outdoor (IQAir, Goldach, Switzerland) and the SDS011 (InovaFitness, Jinan, China) low-cost PM sensors in a traceable manner against the reference gravimetric method according to the EN 12341 standard. This is the first time that PM2.5 and PM10 calibrations of low-cost sensors have been successfully carried out with complex ambient-like aerosols consisting of soot, inorganic species, secondary organic matter, and dust particles under controlled temperature and relative humidity

    Extending traceability in airborne particle size distribution measurements beyond 10 µm : Counting efficiency and unit-to-unit variability of four aerodynamic particle size spectrometers

    No full text
    The aim of this study was to establish traceable number concentration measurements of airborne particles beyond 10 μm in particle size. To this end, the primary standards for particle number concentration at the National Metrology Institutes of Switzerland and Japan were further developed to extend their measurement capabilities. Details on the upgraded setup are provided. An inter-comparison of the two primary standards using an optical particle counter as transfer standard showed that these agree well within the stated uncertainties at polystyrene (PS) equivalent optical diameter of 15 µm. Subsequently, four Model 3321 (TSI Inc., USA) aerodynamic particle size spectrometers (APS) were calibrated against the primary standard of Switzerland using size-certified PS spheres with optical/aerodynamic diameter up to 20 µm as test aerosols. The counting efficiency profile and unit-to-unit variability of the APS units were determined. The results presented here can be useful for the analysis and interpretation of data collected by the different atmospheric aerosol networks worldwide. The outlined methodology can also be applied in the calibration of automated bio-aerosol monitors

    Assessment of real-time bioaerosol particle counters using reference chamber experiments

    No full text
    This study presents the first reference calibrations of three commercially available bioaerosol detectors. The Droplet Measurement Technologies WIBS-NEO (new version of the wideband integrated bioaerosol spectrometer), Plair Rapid-E, and Swisens Poleno were compared with a primary standard for particle number concentrations at the Federal Institute for Metrology (METAS). Polystyrene (PSL) spheres were used to assess absolute particle counts for diameters from 0.5 to 10 µm. For the three devices, counting efficiency was found to be strongly dependent on particle size. The results confirm the expected detection range for which the instruments were designed. While the WIBS-NEO achieves its highest efficiency with smaller particles, e.g. 90 % for 0.9 µm diameter, the Plair Rapid-E performs best for larger particles, with an efficiency of 58 % for particles with a diameter of 10 µm. The Swisens Poleno is also designed for larger particles but operates well from 2 µm. However, the exact counting efficiency of the Poleno could not be evaluated as the cut-off diameter range of the integrated concentrator unit was not completely covered. In further experiments, three different types of fluorescent particles were tested to investigate the fluorescent detection capabilities of the Plair Rapid-E and the Swisens Poleno. Both instruments showed good agreement with the reference data. While the challenge to produce known concentrations of larger particles above 10 µm or even fresh pollen particles remains, the approach presented in this paper provides a potential standardised validation method that can be used to assess counting efficiency and fluorescence measurements of automatic bioaerosol monitoring devices

    Measuring soot particles from automotive exhaust emissions

    Get PDF
    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today’s opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements
    corecore