7 research outputs found
Production and characterization of HER2-displaying budded virus-like particles and their potential as cancer vaccines
Cancer biomarkers are often glycosylated membrane receptor proteins present on the cellular surface. In order to utilize such receptor proteins in designing specific and sensitive diagnostic tools or as immunogens for vaccination based treatments, they need to be expressed in their native conformation. However, membrane receptor proteins are notoriously difficult to produce due to their hydrophobic nature and complex structure. The human epidermal growth factor receptor 2 (HER2) is known to be up regulated in a number of cancers including breast cancer, lung cancer, gastric cancer and glioblastoma multiform and was therefore chosen as tumor antigen in our studies. Here we used the baculovirus-insect cell expression vector system (BEVS) to produce budded virus-like particles (VLPs) serving as a display platform for the antigen. VLPs displaying HER2 were produced in Spodoptera frugiperda (Sf9) insect cells and were purified by sucrose gradient ultracentrifugation. The number of secreted particles was quantified by nanoparticle tracking analysis. To confirm the presence and functionality of displayed HER2, VLPs were labeled with gold-conjugated antibodies, were analyzed by transmission electron microscopy and the ability to present native epitopes was tested through enzyme-linked immunosorbent assay (ELISA). Trastuzumab, an anti-HER2 antibody, showed significant binding to antigen displaying VLPs, which demonstrates the potential of this platform to display cell surface biomarkers in their authentic conformation. In the second part of the study, the efficacy of the aforementioned characterized VLPs as a cancer vaccine was investigated. BALB/c mice were injected intramuscularly with control VLPS and HER2-displaying VLPs in combination with two different adjuvants in a prime-boost regimen. As verified by ELISA, HER2-displaying VLP vaccines induced strong antibody responses when tested against recombinant HER2, with variability observed amongst the different adjuvant groups. For further characterization the antibody-dependent cell-mediated cytotoxicity (ADCC) potential of the induced antibodies will be investigated and vaccinated mice will be challenged with HER2 expressing tumors to test the potential of antigen-displaying VLPs as a cancer vaccine. Overall, using our strategy, many other membrane proteins including tumor antigens, immune cell markers and immune receptors could be expressed. These tools could further be instrumental in cancer vaccine design and diagnostics, as well as antibody selection and engineering
Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus
A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish
A serological assay to detect SARS-CoV-2 seroconversion in humans
Development of an enzyme-linked immunosorbent assay to detect antibodies to the SARS-CoV-2 spike protein in human sera and plasma. Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection.Peer reviewe
A HER2-Displaying Virus-Like Particle Vaccine Protects from Challenge with Mammary Carcinoma Cells in a Mouse Model
Human epidermal growth factor receptor-2 (HER2) is upregulated in 20% to 30% of breast cancers and is a marker of a poor outcome. Due to the development of resistance to passive immunotherapy with Trastuzumab, active anti-HER2 vaccination strategies that could potentially trigger durable tumor-specific immune responses have become an attractive research area. Recently, we have shown that budded virus-like particles (VLPs) produced in Sf9 insect cells are an ideal platform for the expression of complex membrane proteins. To assess the efficacy of antigen-displaying VLPs as active cancer vaccines, BALB/c mice were immunized with insect cell glycosylated and mammalian-like glycosylated HER2-displaying VLPs in combination with two different adjuvants and were challenged with HER2-positive tumors. Higher HER2-specific antibody titers and effector functions were induced in mice vaccinated with insect cell glycosylated HER2 VLPs compared to mammalian-like glycosylated counterparts. Moreover, insect cell glycosylated HER2 VLPs elicited a protective effect in mice grafted with HER2-positive mammary carcinoma cells. Interestingly, no protection was observed in mice that were adjuvanted with Poly (I:C). Here, we show that antigen-displaying VLPs produced in Sf9 insect cells were able to induce robust and durable immune responses in vivo and have the potential to be utilized as active cancer vaccines
Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus
A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish
Functionality of the putative surface glycoproteins of the Wuhan spiny eel influenza virus
A panel of influenza virus-like sequences were recently documented in fish and amphibians. Of these, the Wuhan spiny eel influenza virus (WSEIV) was found to phylogenetically cluster with influenza B viruses as a sister clade. Influenza B viruses have been documented to circulate only in humans, with certain virus isolates found in harbor seals. It is therefore interesting that a similar virus was potentially found in fish. Here we characterize the putative hemagglutinin (HA) and neuraminidase (NA) surface glycoproteins of the WSEIV. Functionally, we show that the WSEIV NA-like protein has sialidase activity comparable to B/Malaysia/2506/2004 influenza B virus NA, making it a bona fide neuraminidase that is sensitive to NA inhibitors. We tested the functionality of the HA by addressing the receptor specificity, stability, preferential airway protease cleavage, and fusogenicity. We show highly specific binding to monosialic ganglioside 2 (GM2) and fusogenicity at a range of different pH conditions. In addition, we found limited antigenic conservation of the WSEIV HA and NA relative to the B/Malaysia/2506/2004 virus HA and NA. In summary, we perform a functional and antigenic characterization of the glycoproteins of WSEIV to assess if it is indeed a bona fide influenza virus potentially circulating in ray-finned fish
A serological assay to detect SARS-CoV-2 seroconversion in humans
Here, we describe a serological enzyme-linked immunosorbent assay for the screening and identification of human SARS-CoV-2 seroconverters. This assay does not require the handling of infectious virus, can be adjusted to detect different antibody types in serum and plasma and is amenable to scaling. Serological assays are of critical importance to help define previous exposure to SARS-CoV-2 in populations, identify highly reactive human donors for convalescent plasma therapy and investigate correlates of protection