3,344 research outputs found

    Line formation in solar granulation: III. The photospheric Si and meteoritic Fe abundances

    Full text link
    Using realistic hydrodynamical simulations of the solar surface convection as 3D, time-dependent, inhomogeneous model atmospheres, the solar photospheric Si abundance has been determined to be log Si = 7.51 +- 0.04. This constitutes a difference of 0.04 dex compared with previous estimates based on the 1D Holweger-M\"uller (1974) model, of which half is attributable to the adopted model atmosphere and the remaining part to the improved quantum mechanical broadening treatment. As a consequence, all meteoritic abundances should be adjusted downwards by the same amount. In particular the meteoritic Fe abundance will be log Fe = 7.46 +- 0.01, in good agreement with the recently determined photospheric Fe abundance (Asplund et al. 2000b). The existing uncertainties unfortunately prevent an observational confirmation of the postulated effects of elemental migration of metals in the Sun.Comment: Accepted for A&

    Line formation in solar granulation: V. Missing UV-opacity and the photospheric Be abundance

    Full text link
    The possibility of unaccounted for opacity sources in the UV for late-type stars has often been invoked to explain discrepancies between predicted and observed flux distributions and spectral line strengths. Such missing UV-opacity could among other things have a significant impact on abundance determination for elements whose only relevant spectral features are accessible in this wavelength region, such as Be. Here, the study by Balachandran & Bell (1998) is re-visited in the light of a realistic 3D hydrodynamical solar model atmosphere and the recently significantly downward revised solar O abundance obtained with the same model atmosphere. The amount of missing UV-opacity, if any, is quantified by enforcing that the OH A-X electronic lines around 313 nm produce the same O abundance as the other available diagnostics: OH vibration-rotation and pure rotation lines in the IR, the forbidden [OI] 630.0 and 636.3 nm lines and high-excitation, permitted OI lines. This additional opacity is then applied for the synthesis of the BeII line at 313.0nm to derive a solar photospheric Be abundance in excellent agreement with the meteoritic value, thus re-enforcing the conclusions of Balachandran & Bell. The about 50% extra opacity over accounted for opacity sources can be well explained by recent calculations by the Iron Project for photo-ionization of FeI.Comment: Accepted for A&A, 7 pages. The article is also available from http://www.mso.anu.edu.au/~martin/publications.htm

    Chemical signatures of planets: beyond solar-twins

    Get PDF
    Elemental abundance studies of solar twin stars suggest that the solar chemical composition contains signatures of the formation of terrestrial planets in the solar system, namely small but significant depletions of the refractory elements. To test this hypothesis, we study stars which, compared to solar twins, have less massive convective envelopes (therefore increasing the amplitude of the predicted effect) or are, arguably, more likely to host planets (thus increasing the frequency of signature detections). We measure relative atmospheric parameters and elemental abundances of a late-F type dwarf sample (52 stars) and a sample of metal-rich solar analogs (59 stars). We detect refractory-element depletions with amplitudes up to about 0.15 dex. The distribution of depletion amplitudes for stars known to host gas giant planets is not different from that of the rest of stars. The maximum amplitude of depletion increases with effective temperature from 5650 K to 5950 K, while it appears to be constant for warmer stars (up to 6300 K). The depletions observed in solar twin stars have a maximum amplitude that is very similar to that seen here for both of our samples. Gas giant planet formation alone cannot explain the observed distributions of refractory-element depletions, leaving the formation of rocky material as a more likely explanation of our observations. More rocky material is necessary to explain the data of solar twins than metal-rich stars, and less for warm stars. However, the sizes of the stars' convective envelopes at the time of planet formation could be regulating these amplitudes. Our results could be explained if disk lifetimes were shorter in more massive stars, as independent observations indeed seem to suggest.Comment: Astronomy and Astrophysics, in press. Full tables available in the source downloa

    Line formation in convective stellar atmospheres. I. Granulation corrections for solar photospheric abundances

    Full text link
    In an effort to estimate the largely unknown effects of photospheric temperature fluctuations on spectroscopic abundance determinations, we have studied the problem of LTE line formation in the inhomogeneous solar photosphere based on detailed 2-dimensional radiation hydrodynamics simulations of the convective surface layers of the Sun. By means of a strictly differential 1D/2D comparison of the emergent equivalent widths, we have derived "granulation abundance corrections" for individual lines, which have to be applied to standard abundance determinations based on homogeneous 1D model atmospheres in order to correct for the influence of the photospheric temperature fluctuations. In general, we find a line strengthening in the presence of temperature inhomogeneities as a consequence of the non-linear temperature dependence of the line opacity. For many lines of practical relevance, the magnitude of the abundance correction may be estimated from interpolation in the tables and graphs provided with this paper. The application of abundance corrections may often be an acceptable alternative to a detailed fitting of individual line profiles based on hydrodynamical simulations. The present study should be helpful in providing upper bounds for possible errors of spectroscopic abundance analyses, and for identifying spectral lines which are least sensitive to the influence of photospheric temperature inhomogeneities.Comment: Accepted by A&

    Freshly ionized matter around the final Helium shell flash object V4334 Sgr (Sakurai's object)

    Get PDF
    We report on the discovery of recently ionized hydrogen-deficient gas in the immediate circumstellar environment of the final helium shell flash star V4334 Sgr (Sakurai's object). On spectra obtained with FORS2 multi-object spectroscopy we have found spatially extended (about 2") emission from [N II], [O I], [O II] and very faint Halpha and [S II]. In the [N II] (ll6548,83) lines we have identified two components located at velocities -350 +/-50 and +200 +/-50 km/s, relative to V4334 Sgr itself. The full width of the [N II] l6583 feature at zero intensity corresponds to a velocity spread of about 1500 km/s. Based on the available data it is not possible to conclusively determine the mechanism of ionization. Both photo-ionization, from a rapidly evolving central star, and shock excitation, as the result of the collision of the fast ouflows with slower circumstellar matter, could account for the observed lines. The central star is still hidden behind strong dust absorption, since only a faint highly reddened continuum is apparent in the spectra. Theory states that it will become hotter and will retrace its post-asymptotic giant branch evolution towards the planetary nebula domain. Our detection of the ionized ejecta from the very late helium shell flash marks the beginning of a new phase in this star's amazingly rapid evolution.Comment: 11 pages, 2 figures. Accepted by ApJ
    • …
    corecore