4,208 research outputs found
Evidence for a quantum phase transition in electron-doped PrCeCuO from Thermopower measurements
The evidence for a quantum phase transition under the superconducting dome in
the high- cuprates has been controversial. We report low temperature
normal state thermopower(S) measurements in electron-doped
PrCeCuO as a function of doping (x from 0.11 to
0.19). We find that at 2K both S and S/T increase dramatically from x=0.11 to
0.16 and then saturate in the overdoped region. This behavior has a remarkable
similarity to previous Hall effect results in
PrCeCuO . Our results are further evidence for an
antiferromagnetic to paramagnetic quantum phase transition in electron-doped
cuprates near x=0.16.Comment: 4 pages, 5 figure
Loading of bosons in optical lattices into the p band
We present a method for transferring bosonic atoms residing on the lowest
s-band of an optical lattice to the first excited p-bands. Our idea hinges on
resonant tunneling between adjacent sites of accelerated lattices. The
acceleration effectively shifts the quasi-bound energies on each site such that
the system can be cast into a Wannier-Stark ladder problem. By adjusting the
acceleration constant, a situation of resonant tunneling between the s- and
p-bands is achievable. Within a mean-field model, considering 87Rb atoms, we
demonstrate population transfer from the s- to the p-bands with around 95 %
efficiency. Nonlinear effects deriving from atom-atom interactions, as well as
coupling of the quasi bound Wannier-Stark states to the continuum, are
considered.Comment: 8 pages, 7 figure
Bloch oscillations of Path-Entangled Photons
We show that when photons in N-particle path entangled |N,0> + |0,N> state
undergo Bloch oscillations, they exhibit a periodic transition between
spatially bunched and antibunched states. The transition occurs even when the
photons are well separated in space. We study the scaling of the
bunching-antibunching period, and show it is proportional to 1/N.Comment: An error in figure 1b of the original manuscript was corrected, and
the period was redefine
Frequency-dependent Thermal Response of the Charge System and Restricted Sum Rules in La(2-x)Sr(x)CuO(4)
By using new and previous measurements of the -plane conductivity
of LaSrCuO (LSCO) it is shown that
the spectral weight
obeys the same law which holds for a conventional
metal like gold, for 's below the plasma frequency. However
, which measures the "thermal response" of the charge system, in
LSCO exhibits a peculiar behavior which points towards correlation effects. In
terms of hopping models, is directly related to an energy scale
, smaller by one order of magnitude than the full bandwidth .Comment: 4 pages with 3 fig
Weak-field Hall effect and static polarizability of Bloch electrons
A theory of the weak field Hall effect of Bloch electrons based on the
analysis of the forces acting on electrons is presented. It is argued that the
electric current is composed of two contributions, that driven by the electric
field along current flow and the non-dissipative contribution originated in
demagnetization currents. The Hall resistance as a function of the electron
concentration for the tight-binding model of a crystal with square lattice and
body-centered cubic lattice is described in detail. For comparison the effect
of strong magnetic fields is also discussed
Number distributions for fermions and fermionized bosons in periodic potentials
We compute the spatial population statistics for one-dimensional fermi-gases
and for bose-gases with hard core repulsions in periodic potentials. We show
how the statistics depend on the atomic density in the ground state of the
system, and we present calculations for the dynamical turn-on of the potential.Comment: 8 pages, 4 figures, submitted to Phys. Rev.
Steering Magnetic Skyrmions with Nonequilibrium Green's Functions
Magnetic skyrmions, topologically protected vortex-like configurations in
spin textures, are of wide conceptual and practical appeal for quantum
information technologies, notably in relation to the making of so-called
race-track memory devices. Skyrmions can be created, steered and destroyed with
magnetic fields and/or (spin) currents. Here we focus on the latter mechanism,
analyzed via a microscopic treatment of the skyrmion-current interaction. The
system we consider is an isolated skyrmion in a square-lattice cluster,
interacting with electrons spins in a current-carrying quantum wire. For the
theoretical description, we employ a quantum formulation of spin-dependent
currents via nonequilibrium Green's functions (NEGF) within the generalized
Kadanoff-Baym ansatz (GKBA). This is combined with a treatment of skyrmions
based on classical localized spins, with the skyrmion motion described via
Ehrenfest dynamics. With our mixed quantum-classical scheme, we assess how
time-dependent currents can affect the skyrmion dynamics, and how this in turn
depends on electron-electron and spin-orbit interactions in the wire. Our study
shows the usefulness of a quantum-classical treatment of skyrmion steering via
currents, as a way for example to validate/extract an effective,
classical-only, description of skyrmion dynamics from a microscopic quantum
modeling of the skyrmion-current interaction.Comment: 10 pages, 8 figures, contribution to the proceedings of "Progress in
Nonequilibrium Green's Functions VII
Designed Interaction Potentials via Inverse Methods for Self-Assembly
We formulate statistical-mechanical inverse methods in order to determine
optimized interparticle interactions that spontaneously produce target
many-particle configurations. Motivated by advances that give experimentalists
greater and greater control over colloidal interaction potentials, we propose
and discuss two computational algorithms that search for optimal potentials for
self-assembly of a given target configuration. The first optimizes the
potential near the ground state and the second near the melting point. We begin
by applying these techniques to assembling open structures in two dimensions
(square and honeycomb lattices) using only circularly symmetric pair
interaction potentials ; we demonstrate that the algorithms do indeed cause
self-assembly of the target lattice. Our approach is distinguished from
previous work in that we consider (i) lattice sums, (ii) mechanical stability
(phonon spectra), and (iii) annealed Monte Carlo simulations. We also devise
circularly symmetric potentials that yield chain-like structures as well as
systems of clusters.Comment: 28 pages, 23 figure
Theory of Diamagnetism in the Pseudogap Phase: Implications from the Self energy of Angle Resolved Photoemission
In this paper we apply the emerging- consensus understanding of the fermionic
self energy deduced from angle resolved photoemisssion spectroscopy (ARPES)
experiments to deduce the implications for orbital diamagnetism in the
underdoped cuprates. Many theories using many different starting points have
arrived at a broadened BCS-like form for the normal state self energy
associated with a d-wave excitation gap, as is compatible with ARPES data.
Establishing compatibility with the f-sum rules, we show how this self energy,
along with the constraint that there is no Meissner effect in the normal phase
are sufficient to deduce the orbital susceptibility. We conclude, moreover,
that diamagnetism is large for a d-wave pseudogap. Our results should apply
rather widely to many theories of the pseudogap, independent of the microscopic
details.Comment: 15 pages, 8 figure
Flavor-twisted boundary condition for simulations of quantum many-body systems
We present an approximative simulation method for quantum many-body systems
based on coarse graining the space of the momentum transferred between
interacting particles, which leads to effective Hamiltonians of reduced size
with the flavor-twisted boundary condition. A rapid, accurate, and fast
convergent computation of the ground-state energy is demonstrated on the
spin-1/2 quantum antiferromagnet of any dimension by employing only two sites.
The method is expected to be useful for future simulations and quick estimates
on other strongly correlated systems.Comment: 6 pages, 2 figure
- …