3 research outputs found

    OCEAN: a randomized Phase III study of melflufen + dexamethasone to treat relapsed refractory multiple myeloma

    Get PDF
    Melflufen is a novel peptide-drug conjugate that rapidly delivers a cytotoxic payload into tumor cells. It has emerged as a potential new multiple myeloma treatment, particularly for late-stage forms of the disease. Here we describe the rationale and design of OCEAN (NCT03151811), a randomized, head-to-head, superiority, open-label, global, Phase III study evaluating the efficacy and safety of melflufen + dexamethasone versus pomalidomide + dexamethasone. Eligible patients with relapsed refractory multiple myeloma have received 2-4 previous treatments and are refractory to both lenalidomide and their last treatment. Patients are excluded if they have previously received pomalidomide. The primary endpoint is progression-free survival, and key secondary endpoints include overall response rate, duration of response and overall survival

    Fracture strength of yttria-stabilized zirconium-dioxide (Y-TZP) fixed dental prostheses (FDPs) with different abutment core thicknesses and connector dimensions

    No full text
    Purpose: The aim of this study was to investigate the fracture strength and fracture mode of yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) posterior three-unit FDPs with varying connector dimension and abutment core thickness. Materials and Methods: Seventy 3-unit posterior FDP cores made of Y-TZP were divided into 7 groups with varying connector dimensions and abutment core thicknesses. All the FDPs underwent a simulated aging process including veneering, firing applications, thermocycling, and cyclic preloading. Finally the FDPs were subjected to load until fracture. Results: Significant difference was seen between the different subgroups (p < 0.05). Groups with the same connector dimension showed no significant difference in fracture strength. All fractures of the specimens involved the connector. Conclusions: Within the limitations of this in vitro study, it can be concluded that the strength of an all-ceramic Y-TZP FDP beam depends more on the connector dimension than on the thickness of the abutment core. Results indicate that the minimum abutment core thickness of an all-ceramic Y-TZP FDP might be reduced, compared to the recommended thickness, without reducing the strength of the reconstruction. This indication, however, needs to be verified by further studies before being considered generally applicable
    corecore