406 research outputs found
In Utero Stem Cell Transplantation: Potential Therapeutic Application for Muscle Diseases
Muscular dystrophies, myopathies, and traumatic muscle injury and loss encompass a large group of conditions that currently have no cure. Myoblast transplantations have been investigated as potential cures for these conditions for decades. However, current techniques lack the ability to generate cell numbers required to produce any therapeutic benefit. In utero stem cell transplantation into embryos has been studied for many years mainly in the context of hematopoietic cells and has shown to have experimental advantages and therapeutic applications. Moreover, patient-derived cells can be used for experimental transplantation into nonhuman animal embryos via in utero injection as the immune response is absent at such early stages of development. We therefore propose in utero transplantation as a potential method to generate patient-derived humanized skeletal muscle as well as muscle stem cells in animals for therapeutic purposes as well as patient-specific drug screening
Imaging analysis for muscle stem cells and regeneration
Composed of a diverse variety of cells, the skeletal muscle is one of the body’s tissues with the remarkable ability to regenerate after injury. One of the key players in the regeneration process is the muscle satellite cell (MuSC), a stem cell population for skeletal muscle, as it is the source of new myofibers. Maintaining MuSC quiescence during homeostasis involves complex interactions between MuSCs and other cells in their corresponding niche in adult skeletal muscle. After the injury, MuSCs are activated to enter the cell cycle for cell proliferation and differentiate into myotubes, followed by mature myofibers to regenerate muscle. Despite decades of research, the exact mechanisms underlying MuSC maintenance and activation remain elusive. Traditional methods of analyzing MuSCs, including cell cultures, animal models, and gene expression analyses, provide some insight into MuSC biology but lack the ability to replicate the 3-dimensional (3-D) in vivo muscle environment and capture dynamic processes comprehensively. Recent advancements in imaging technology, including confocal, intra-vital, and multi-photon microscopies, provide promising avenues for dynamic MuSC morphology and behavior to be observed and characterized. This chapter aims to review 3-D and live-imaging methods that have contributed to uncovering insights into MuSC behavior, morphology changes, interactions within the muscle niche, and internal signaling pathways during the quiescence to activation (Q-A) transition. Integrating advanced imaging modalities and computational tools provides a new avenue for studying complex biological processes in skeletal muscle regeneration and muscle degenerative diseases such as sarcopenia and Duchenne muscular dystrophy (DMD)
Increasing myosin light chain 3f (MLC3f) protects against a decline in contractile velocity
Disuse induces adaptations in skeletal muscle, which lead to muscle deterioration. Hindlimb-unloading (HU) is a well-established model to investigate cellular mechanisms responsible for disuse-induced skeletal muscle dysfunction. In myosin heavy chain (MHC) type IIB fibers HU induces a reduction in contraction speed (Vo) and a reduction in the relative myosin light chain 3f (MLC3f) protein content compared with myosin light chain 1f (MLC1f) protein. This study tested the hypothesis that increasing the relative MLC3f protein content via rAd-MLC3f vector delivery would attenuate the HU-induced decline in Vo in single MHC type IIB fibers. Fischer-344 rats were randomly assigned to one of three groups: control, HU for 7 days, and HU for 7 days plus rAd-MLC3f. The semimembranosus muscles were injected with rAd-MLC3f (3.75 x 1011-5 x 1011 ifu/ml) at four days after the initiation of HU. In single MHC type IIB fibers the relative MLC3f content decreased by 25% (12.00±0.60% to 9.06±0.66%) and Vo was reduced by 29% (3.22±0.14fl/s vs. 2.27±0.08fl/s) with HU compared to the control group. The rAd-MLC3f injection resulted in an increase in the relative MLC3f content (12.26±1.19%) and a concomitant increase in Vo (2.90±0.15fl/s) of MHC type IIB fibers. A positive relationship was observed between the percent of MLC3f content and Vo. Maximal isometric force and specific tension were reduced with HU by 49% (741.45±44.24μN to 379.09±23.77μN) and 33% (97.58±4.25kN/m2 to 65.05±2.71kN/m2), respectively compared to the control group. The rAd-MLC3f injection did not change the HU-induced decline in force or specific tension. Collectively, these results indicate that rAd-MLC3f injection rescues hindlimb unloading-induced decline in Vo in MHC type IIB single muscle fibers.Published versio
Myogenic specification of side population cells in skeletal muscle
Skeletal muscle contains myogenic progenitors called satellite cells and muscle-derived stem cells that have been suggested to be pluripotent. We further investigated the differentiation potential of muscle-derived stem cells and satellite cells to elucidate relationships between these two populations of cells. FACS® analysis of muscle side population (SP) cells, a fraction of muscle-derived stem cells, revealed expression of hematopoietic stem cell marker Sca-1 but did not reveal expression of any satellite cell markers. Muscle SP cells were greatly enriched for cells competent to form hematopoietic colonies. Moreover, muscle SP cells with hematopoietic potential were CD45 positive. However, muscle SP cells did not differentiate into myocytes in vitro. By contrast, satellite cells gave rise to myocytes but did not express Sca-1 or CD45 and never formed hematopoietic colonies. Importantly, muscle SP cells exhibited the potential to give rise to both myocytes and satellite cells after intramuscular transplantation. In addition, muscle SP cells underwent myogenic specification after co-culture with myoblasts. Co-culture with myoblasts or forced expression of MyoD also induced muscle differentiation of muscle SP cells prepared from mice lacking Pax7 gene, an essential gene for satellite cell development. Therefore, these data document that satellite cells and muscle-derived stem cells represent distinct populations and demonstrate that muscle-derived stem cells have the potential to give rise to myogenic cells via a myocyte-mediated inductive interaction
MyoD induces myogenic differentiation through cooperation of its NH2- and COOH-terminal regions
MyoD and Myf5 are basic helix-loop-helix transcription factors that play key but redundant roles in specifying myogenic progenitors during embryogenesis. However, there are functional differences between the two transcription factors that impact myoblast proliferation and differentiation. Target gene activation could be one such difference. We have used microarray and polymerase chain reaction approaches to measure the induction of muscle gene expression by MyoD and Myf5 in an in vitro model. In proliferating cells, MyoD and Myf5 function very similarly to activate the expression of likely growth phase target genes such as L-myc, m-cadherin, Mcpt8, Runx1, Spp1, Six1, IGFBP5, and Chrnβ1. MyoD, however, is strikingly more effective than Myf5 at inducing differentiation-phase target genes. This distinction between MyoD and Myf5 results from a novel and unanticipated cooperation between the MyoD NH2- and COOH-terminal regions. Together, these results support the notion that Myf5 functions toward myoblast proliferation, whereas MyoD prepares myoblasts for efficient differentiation
授業研究を通した教師の実践力の向上 : 授業観の変容に着目して
本稿の目的は,広島大学附属東雲中学校で展開されている授業研究を通して,その研究に携わる教師の実践力が向上する様相を考察することである。そのために,まず,東雲中学校で展開されている授業研究は,本時の目標に迫る要因を複数特定する研究であることなどを述べた。そして,教師の実践力のうち,授業を前提とした教材に関する知識に視点をあてて,エピソード分析により8つの要素を抽出・構造化して,東雲中学校のA教諭の授業観が変容する様相を示すことにより,授業研究を通して教師の実践力が向上したことを明らかにした
Loss of MyoD Promotes Fate Transdifferentiation of Myoblasts Into Brown Adipocytes
Brown adipose tissue (BAT) represents a promising agent to ameliorate obesity and other metabolic disorders. How- ever, the abundance of BAT decreases with age and BAT paucity is a common feature of obese subjects. As brown adipocytes and myoblasts share a common Myf5 lineage origin, elucidating the molecular mechanisms underlying the fate choices of brown adipocytes versus myoblasts may lead to novel approaches to expand BAT mass. Here we identify MyoD as a key negative regulator of brown adipocyte development. CRISPR/CAS9-mediated deletion of MyoD in C2C12 myoblasts facilitates their adipogenic transdifferentiation. MyoD knockout downregulates miR- 133 and upregulates the miR-133 target Igf1r, leading to amplification of PI3K–Akt signaling. Accordingly, inhibition of PI3K or Akt abolishes the adipogenic gene expression of MyoD null myoblasts. Strikingly, loss of MyoD converts satellite cell-derived primary myoblasts to brown adipocytes through upregulation of Prdm16, a target of miR-133 and key determinant of brown adipocyte fate. Conversely, forced expression of MyoD in brown preadipocytes blocks brown adipogenesis and upregulates the expression of myogenic genes. Importantly, miR-133a knockout signifi- cantly blunts the inhibitory effect of MyoD on brown adipogenesis. Our results establish MyoD as a negative regu- lator of brown adipocyte development by upregulating miR-133 to suppress Akt signaling and Prdm16
Evaluation of microRNA expression in patient bone marrow aspirate slides
<div><p>Like formalin fixed paraffin embedded (FFPE) tissues, archived bone marrow aspirate slides are an abundant and untapped resource of biospecimens that could enable retrospective molecular studies of disease. Historically, RNA obtained from slides is limited in utility because of their low quality and highly fragmented nature. MicroRNAs are small (≈22 nt) non-coding RNA that regulate gene expression, and are speculated to preserve well in FFPE tissue. Here we investigate the use of archived bone marrow aspirate slides for miRNA expression analysis in paediatric leukaemia. After determining the optimal method of miRNA extraction, we used TaqMan qRT-PCR to identify reference miRNA for normalisation of other miRNA species. We found hsa-miR-16 and hsa-miR-26b to be the most stably expressed between lymphoblastoid cell lines, primary bone marrow aspirates and archived samples. We found the average fold change in expression of hsa-miR-26b and two miRNA reportedly dysregulated in leukaemia (hsa-miR-128a, hsa-miR-223) was <0.5 between matching archived slide and bone marrow aspirates. Differential expression of hsa-miR-128a and hsa-miR-223 was observed between leukaemic and non-leukaemic bone marrow from archived slides or flash frozen bone marrow. The demonstration that archived bone marrow aspirate slides can be utilized for miRNA expression studies offers tremendous potential for future investigations into the role miRNA play in the development and long term outcome of hematologic, as well as non-hematologic, diseases.</p> </div
- …