158 research outputs found

    Induction of outward current by orexin-B in mouse peritoneal macrophages

    Get PDF
    AbstractTo define effects of novel feeding regulating peptides, orexins, in immunocompetent cells, ion channel activity in mouse peritoneal macrophages was analyzed by the perforated patch-clamp method. Orexin-B (OX-B) induced an outward current at smaller holding potentials than K+ equilibrium potentials. Reversal potentials of OX-B induced current were dependent on external K+ concentrations but not on external Cl− concentration. Orexin-A is less effective than OX-B. Quinine blocked the outward current and tetraethylammonium partially suppressed the current. These results suggest that OX-B can modulate macrophage functions through the activation of Ca2+-dependent K+ channels

    Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task

    Get PDF
    Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants' group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication

    Structural basis for recognition of cognate tRNA by tyrosyl-tRNA synthetase from three kingdoms

    Get PDF
    The specific aminoacylation of tRNA by tyrosyl-tRNA synthetases (TyrRSs) relies on the identity determinants in the cognate tRNATyrs. We have determined the crystal structure of Saccharomyces cerevisiae TyrRS (SceTyrRS) complexed with a Tyr-AMP analog and the native tRNATyr(GΨA). Structural information for TyrRS–tRNATyr complexes is now full-line for three kingdoms. Because the archaeal/eukaryotic TyrRSs–tRNATyrs pairs do not cross-react with their bacterial counterparts, the recognition modes of the identity determinants by the archaeal/eukaryotic TyrRSs were expected to be similar to each other but different from that by the bacterial TyrRSs. Interestingly, however, the tRNATyr recognition modes of SceTyrRS have both similarities and differences compared with those in the archaeal TyrRS: the recognition of the C1-G72 base pair by SceTyrRS is similar to that by the archaeal TyrRS, whereas the recognition of the A73 by SceTyrRS is different from that by the archaeal TyrRS but similar to that by the bacterial TyrRS. Thus, the lack of cross-reactivity between archaeal/eukaryotic and bacterial TyrRS-tRNATyr pairs most probably lies in the different sequence of the last base pair of the acceptor stem (C1-G72 vs G1-C72) of tRNATyr. On the other hand, the recognition mode of Tyr-AMP is conserved among the TyrRSs from the three kingdoms

    Spin-gap formation due to spin-Peierls instability in π-orbital-ordered NaO2

    Get PDF
    We have investigated the low-temperature magnetism of sodium superoxide (NaO2), in which spin, orbital, and lattice degrees of freedom are closely entangled. The magnetic susceptibility shows anomalies at T1 = 220 K and T2 = 190 K, which correspond well to the structural phase transition temperatures, and a sudden decrease below T3 = 34 K. At 4.2 K, the magnetization shows a clear stepwise anomaly around 30 T with a large hysteresis. In addition, the muon spin relaxation experiments indicate no magnetic phase transition down to T = 0.3 K. The inelastic neutron scattering spectrum exhibits magnetic excitation with a finite energy gap. These results confirm that the ground state of NaO2 is a spin-singlet state. To understand this ground state in NaO2, we performed Raman scattering experiments. All the Raman-active libration modes expected for the marcasite phase below T2 are observed. Furthermore, we find that several new peaks appear below T3. This directly evidences the low crystal symmetry, namely, the presence of the phase transition at T3.We conclude that the singlet ground state of NaO2 is due to the spin-Peierls instability
    corecore