309 research outputs found

    The increased susceptibility to hydrogen peroxide of the (post)-ischemic rat heart is associated with the magnitude of the low molecular weight iron pool

    Get PDF
    Recently we have shown that intracellular low molecular weight (LMW) iron increases during ischemia. It is hypothesized that this increase in LMW iron during ischemia underlies the reported hydrogen peroxide toxicity toward ischemic hearts. To investigate this hypothesis, rat hearts were subjected to 15 min of no-flow ischemia and reperfused with buffer saturated against 95% N2 and 5% CO2 (anoxic reperfusuion) for 7 min. Hearts were then swithched to buffer saturated against 95% O2 and 5% CO2 (reoxygenation) to assess functional recovery. The cardiac function recovered to 80 ± 7% of the preischemic value. When the anoxic reperfusion was applied in the presence of 10 μM hydrogen peroxide, functional recovery after reoxygenation was 47 ± 7%. Hearts that were perfused with deferoxamine before ischemia and then subjected to ischemia and anoxic reperfusion in the presence of 10 μM hydrogen peroxide recovered to 78 ± 8%. Immediate reoxygenation after ischemia led to only 45 ± 6% recovery of function. During ischemia, LMW iron increased from 49 ± 45 to 183 ± 45 pmol/mg protein (p < .05) and decreasedto 58 ± 38 pmol/mg protein (p < .05) during the subsequent anoxic perfusion. Rat hearts preloaded with deferoxamine showed a slightly higher LMW iron content than normal (85 ± 23 and 49 ± 45 pmol/mg protein, respectively; n.s.), which showed a small, nonsignificant increase up to 136 ± 42 pmol/mg protein after 15 min of ischemia. No significant changes were found in reduced and oxidized glutathione content and glutathione peroxidase or catalase activities under those conditions. Our results indicate that hydrogen peroxide toxicity is determined by the amount of catalytic iron in the LMW pool and not by a decrease in antioxidant defense capacity to hydrogen peroxide

    Integrated sampling-and-sensing using microdialysis and biosensing by particle motion for continuous cortisol monitoring

    Get PDF
    Microdialysis catheters are small probes that allow sampling from biological systems and human subjects with minimal perturbation. Traditionally, microdialysis samples are collected in vials, transported to a laboratory, and analysed with typical turnaround times of hours to days. To realize a continuous sampling-and-sensing methodology with minimal time delay, we studied the integration of microdialysis sampling with a sensor for continuous biomolecular monitoring based on Biosensing by Particle Motion (BPM). A microfluidic flow cell was designed with a volume of 12 μl in order to be compatible with flowrates of microdialysis sampling. The analyte recovery and the time characteristics of the sampling-and-sensing system were studied using a food colorant in buffer and using cortisol in buffer and in blood plasma. Concentration step functions were applied, and the system response was measured using optical absorption and a continuous BPM cortisol sensor. The cortisol recovery was around 80% for a 30 mm microdialysis membrane with a 20 kDa molecular weight cut-off and a flowrate of 2 μl min−1. The concentration-time data could be fitted with a transport delay time and single-exponential relaxation curves. The total delay time of the sampling-and-sensing methodology was about 15 minutes. Continuous sampling-and-sensing was demonstrated over a period of 5 hours. These results represent an important step toward integrated sampling-and-sensing for the continuous monitoring of a wide variety of low-concentration biomolecular substances for applications in biological and biomedical research.</p

    Integrated sampling-and-sensing using microdialysis and biosensing by particle motion for continuous cortisol monitoring

    Get PDF
    Microdialysis catheters are small probes that allow sampling from biological systems and human subjects with minimal perturbation. Traditionally, microdialysis samples are collected in vials, transported to a laboratory, and analysed with typical turnaround times of hours to days. To realize a continuous sampling-and-sensing methodology with minimal time delay, we studied the integration of microdialysis sampling with a sensor for continuous biomolecular monitoring based on Biosensing by Particle Motion (BPM). A microfluidic flow cell was designed with a volume of 12 μl in order to be compatible with flowrates of microdialysis sampling. The analyte recovery and the time characteristics of the sampling-and-sensing system were studied using a food colorant in buffer and using cortisol in buffer and in blood plasma. Concentration step functions were applied, and the system response was measured using optical absorption and a continuous BPM cortisol sensor. The cortisol recovery was around 80% for a 30 mm microdialysis membrane with a 20 kDa molecular weight cut-off and a flowrate of 2 μl min−1. The concentration-time data could be fitted with a transport delay time and single-exponential relaxation curves. The total delay time of the sampling-and-sensing methodology was about 15 minutes. Continuous sampling-and-sensing was demonstrated over a period of 5 hours. These results represent an important step toward integrated sampling-and-sensing for the continuous monitoring of a wide variety of low-concentration biomolecular substances for applications in biological and biomedical research.</p

    Towards continuous monitoring of TNF-α at picomolar concentrations using biosensing by particle motion

    Get PDF
    The ability to continuously monitor cytokines is desirable for fundamental research studies and healthcare applications. Cytokine release is characterized by picomolar circulating concentrations, short half-lives, and rapid peak times. Here, we describe the characteristics and feasibility of a particle-based biosensing technique for continuous monitoring of TNF-α at picomolar concentrations. The technique is based on the optical tracking of particle motion and uses an antibody sandwich configuration. Experimental results show how the analyte concentration influences the particle diffusivity and characteristic response time of the sensor, and how the sensitivity range depends on the antibody functionalization density. Furthermore, the data clarifies how antibodies supplemented in solution can shorten the characteristic response time. Finally, we demonstrate association rate-based sensing as a first step towards continuous monitoring of picomolar TNF-α concentrations, over a period of 2 h with delay times under 15 min. The insights from this research will enable the development of continuous monitoring sensors using high-affinity binders, providing the sensitivity and speed needed in applications like cytokine monitoring.</p

    Sandwich Immunosensor Based on Particle Motion:How Do Reactant Concentrations and Reaction Pathways Determine the Time-Dependent Response of the Sensor?

    Get PDF
    To control and optimize the speed of a molecular biosensor, it is crucial to quantify and understand the mechanisms that underlie the time-dependent response of the sensor. Here, we study how the kinetic properties of a particle-based sandwich immunosensor depend on underlying parameters, such as reactant concentrations and the size of the reaction chamber. The data of the measured sensor responses could be fitted with single-exponential curves, with characteristic response times that depend on the analyte concentration and the binder concentrations on the particle and substrate. By comparing characteristic response times at different incubation configurations, the data clarifies how two distinct reaction pathways play a role in the sandwich immunosensor, namely, analyte binding first to particles and thereafter to the substrate, and analyte binding first to the substrate and thereafter to a particle. For a concrete biosensor design, we found that the biosensor is dominated by the reaction pathway where analyte molecules bind first to the substrate and thereafter to a particle. Within this pathway, the binding of a particle to the substrate-bound analyte dominates the sensor response time. Thus, the probability of a particle interacting with the substrate was identified as the main direction to improve the speed of the biosensor while maintaining good sensitivity. We expect that the developed immunosensor and research methodology can be generally applied to understand the reaction mechanisms and optimize the kinetic properties of sandwich immunosensors with particle labels.</p

    Anatomical Pathways Involved in Generating and Sensing Rhythmic Whisker Movements

    Get PDF
    The rodent whisker system is widely used as a model system for investigating sensorimotor integration, neural mechanisms of complex cognitive tasks, neural development, and robotics. The whisker pathways to the barrel cortex have received considerable attention. However, many subcortical structures are paramount to the whisker system. They contribute to important processes, like filtering out salient features, integration with other senses, and adaptation of the whisker system to the general behavioral state of the animal. We present here an overview of the brain regions and their connections involved in the whisker system. We do not only describe the anatomy and functional roles of the cerebral cortex, but also those of subcortical structures like the striatum, superior colliculus, cerebellum, pontomedullary reticular formation, zona incerta, and anterior pretectal nucleus as well as those of level setting systems like the cholinergic, histaminergic, serotonergic, and noradrenergic pathways. We conclude by discussing how these brain regions may affect each other and how they together may control the precise timing of whisker movements and coordinate whisker perception

    Life path analysis: scaling indicates priming effects of social and habitat factors on dispersal distances

    Get PDF
    1. Movements of many animals along a life-path can be separated into repetitive ones within home ranges and transitions between home ranges. We sought relationships of social and environmental factors with initiation and distance of transition movements in 114 buzzards Buteo buteo that were marked as nestlings with long-life radio tags. 2. Ex-natal dispersal movements of 51 buzzards in autumn were longer than for 30 later in their first year and than 35 extra-natal movements between home ranges after leaving nest areas. In the second and third springs, distances moved from winter focal points by birds that paired were the same or less than for unpaired birds. No post-nuptial movement exceeded 2 km. 3. Initiation of early ex-natal dispersal was enhanced by presence of many sibs, but also by lack of worm-rich loam soils. Distances travelled were greatest for birds from small broods and with relatively little short grass-feeding habitat near the nest. Later movements were generally enhanced by the absence of loam soils and short grassland, especially with abundance of other buzzards and probable poor feeding habitats (heathland, long grass). 4. Buzzards tended to persist in their first autumn where arable land was abundant, but subsequently showed a strong tendency to move from this habitat. 5. Factors that acted most strongly in ½-km buffers round nests, or round subsequent focal points, usually promoted movement compared with factors acting at a larger scale. Strong relationships between movement distances and environmental characteristics in ½-km buffers, especially during early ex-natal dispersal, suggested that buzzards became primed by these factors to travel far. 6. Movements were also farthest for buzzards that had already moved far from their natal nests, perhaps reflecting genetic predisposition, long-term priming or poor habitat beyond the study area
    corecore