3 research outputs found

    Mechanical Cues for Triggering and Regulating Cellular Movement Selectively at the Single-Cell Level

    No full text
    Cell motility plays important roles in many biophysical and physiological processes ranging from in vitro biomechanics, wound healing, to cancer metastasis. This work introduces a new means to trigger and regulate motility individually using transient mechanical stimulus applied to designated cells. Using BV2 microglial cells, our investigations indicate that motility can be reproducibly and reliably initiated using mechanical compression of the cells. The location and magnitude of the applied force impact the movement of the cell. Based on observations from this investigation and current knowledge of BV2 cellular motility, new physical insights are revealed into the underlying mechanism of force-induced single cellular movement. The process involves high degrees of myosin activation to repair actin cortex breakages induced by the initial mechanical compression, which leads to focal adhesion degradation, lamellipodium detachment, and finally, cell polarization and movement. Modern technology enables accurate control over force magnitude and location of force delivery, thus bringing us closer to programming cellular movement at the single-cell level. This approach is of generic importance to other cell types beyond BV2 cells and has the intrinsic advantages of being transient, non-toxic, and non-destructive, thus exhibiting high translational potentials including mechano-based therapy

    Mechanical Cues for Triggering and Regulating Cellular Movement Selectively at the Single-Cell Level

    No full text
    Cell motility plays important roles in many biophysical and physiological processes ranging from in vitro biomechanics, wound healing, to cancer metastasis. This work introduces a new means to trigger and regulate motility individually using transient mechanical stimulus applied to designated cells. Using BV2 microglial cells, our investigations indicate that motility can be reproducibly and reliably initiated using mechanical compression of the cells. The location and magnitude of the applied force impact the movement of the cell. Based on observations from this investigation and current knowledge of BV2 cellular motility, new physical insights are revealed into the underlying mechanism of force-induced single cellular movement. The process involves high degrees of myosin activation to repair actin cortex breakages induced by the initial mechanical compression, which leads to focal adhesion degradation, lamellipodium detachment, and finally, cell polarization and movement. Modern technology enables accurate control over force magnitude and location of force delivery, thus bringing us closer to programming cellular movement at the single-cell level. This approach is of generic importance to other cell types beyond BV2 cells and has the intrinsic advantages of being transient, non-toxic, and non-destructive, thus exhibiting high translational potentials including mechano-based therapy

    Engineering Amyloid Fibrils from β‑Solenoid Proteins for Biomaterials Applications

    No full text
    Nature provides numerous examples of self-assembly that can potentially be implemented for materials applications. Considerable attention has been given to one-dimensional cross-β or amyloid structures that can serve as templates for wire growth or strengthen materials such as glue or cement. Here, we demonstrate controlled amyloid self-assembly based on modifications of β-solenoid proteins. They occur naturally in several contexts (e.g., antifreeze proteins, drug resistance proteins) but do not aggregate <i>in vivo</i> due to capping structures or distortions at their ends. Removal of these capping structures and regularization of the ends of the spruce budworm and rye grass antifreeze proteins yield micron length amyloid fibrils with predictable heights, which can be a platform for biomaterial-based self-assembly. The design process, including all-atom molecular dynamics simulations, purification, and self-assembly procedures are described. Fibril formation with the predicted characteristics is supported by evidence from thioflavin-T fluorescence, circular dichroism, dynamic light scattering, and atomic force microscopy. Additionally, we find evidence for lateral assembly of the modified spruce budworm antifreeze fibrils with sufficient incubation time. The kinetics of polymerization are consistent with those for other amyloid formation reactions and are relatively fast due to the preformed nature of the polymerization nucleus
    corecore