283 research outputs found

    Feynman path-integral approach to the QED3 theory of the pseudogap

    Get PDF
    In this work the connection between vortex condensation in a d-wave superconductor and the QED3_3 gauge theory of the pseudogap is elucidated. The approach taken circumvents the use of the standard Franz-Tesanovic gauge transformation, borrowing ideas from the path-integral analysis of the Aharonov-Bohm problem. An essential feature of this approach is that gauge-transformations which are prohibited on a particular multiply-connected manifold (e.g. a superconductor with vortices) can be successfully performed on the universal covering space associated with that manifold.Comment: 15 pages, 1 Figure. Int. J. Mod. Phys. B 17, 4509 (2003). Minor changes from previous versio

    Non-local order in gapless systems: Entanglement Spectrum in Spin Chains

    Full text link
    We show that the entanglement spectrum can be used to define non-local order in gapless spin systems. We find a gap that fully separates a series of generic, high `entanglement energy' levels, from a flat band of levels with specific multiplicities that uniquely define the ground-state, and remains finite in the thermodynamic limit. We pick the appropriate set of quantum numbers, and then partition the system in this space. This partition corresponds to a very non-local real-space cut. Despite the fact that the Laughlin state is bulk gapped while the antiferromagnetic spin chain state is bulk gapless, we show that the S=1/2 Heisenberg antiferromagnet in one dimension has an entanglement spectrum almost identical to that of the Laughlin Fractional Quantum Hall state in two dimensions, revealing the similar field theory of their low-energy edge and bulk excitations respectively.Comment: 4.5 pages, 3 figures; submitted to PRL on 10/08/09; revised version plus supplementary materia

    Comment on "Statistical Mechanics of Non-Abelian Chern-Simons Particles"

    Get PDF
    The second virial coefficient for non-Abelian Chern-Simons particles is recalculated. It is shown that the result is periodic in the flux parameter just as in the Abelian theory.Comment: 3 pages, latex fil

    Spin 3/2 dimer model

    Full text link
    We present a parent Hamiltonian for weakly dimerized valence bond solid states for arbitrary half-integral S. While the model reduces for S=1/2 to the Majumdar-Ghosh Hamiltonian we discuss this model and its properties for S=3/2. Its degenerate ground state is the most popular toy model state for discussing dimerization in spin 3/2 chains. In particular, it describes the impurity induced dimer phase in Cr8Ni as proposed recently. We point out that the explicit construction of the Hamiltonian and its main features apply to arbitrary half-integral spin S.Comment: 5+ pages, 6 figures; to appear in Europhysics Letter

    Exact Study of the 1D Boson Hubbard Model with a Superlattice Potential

    Full text link
    We use Quantum Monte Carlo simulations and exact diagonalization to explore the phase diagram of the Bose-Hubbard model with an additional superlattice potential. We first analyze the properties of superfluid and insulating phases present in the hard-core limit where an exact analytic treatment is possible via the Jordan-Wigner transformation. The extension to finite on-site interaction is achieved by means of quantum Monte Carlo simulations. We determine insulator/superfluid phase diagrams as functions of the on-site repulsive interaction, superlattice potential strength, and filling, finding that insulators with fractional occupation numbers, which are present in the hard-core case, extend deep into the soft-core region. Furthermore, at integer fillings, we find that the competition between the on-site repulsion and the superlattice potential can produce a phase transition between a Mott insulator and a charge density wave insulator, with an intermediate superfluid phase. Our results are relevant to the behavior of ultracold atoms in optical superlattices which are beginning to be studied experimentally.Comment: 13 pages, 23 figure

    Phase Diagram of Half Doped Manganites

    Full text link
    An analysis of the properties of half-doped manganites is presented. We build up the phase diagram of the system combining a realistic calculation of the electronic properties and a mean field treatment of the temperature effects. The electronic structure of the manganites are described with a double exchange model with cooperative Jahn-Teller phonons and antiferromagnetic coupling between the MnMn core spins. At zero temperature a variety of electronic phases as ferromagnetic (FM) charge ordered (CO) orbital ordered (OO), CE-CO-OO and FM metallic, are obtained. By raising the temperature the CE-CO-OO phase becomes paramagnetic (PM), but depending on the electron-phonon coupling and the exchange coupling the transition can be direct or trough intermediate states: a FM disorder metallic, a PM-CO-OO or a FM-CO-OO. We also discus the nature of the high temperature PM phase in the regime of finite electron phonon coupling. In this regime half of the oxygen octahedra surrounding the MnMn ions are distorted. In the weak coupling regime the octahedra are slightly deformed and only trap a small amount of electronic charge, rendering the system metallic consequentially. However in the strong coupling regime the octahedra are strongly distorted, the charge is fully localized in polarons and the system is insulator.Comment: 10 pagses, 9 figures include
    • …
    corecore