12 research outputs found

    Outcome of Hypotensive Trauma Patients by Time and Day of Arrival.

    No full text
    BACKGROUND: Although most studies of trauma patients have not demonstrated a weekend or night effect on mortality, outcomes of hypotensive (systolic blood pressureHg) patients have not been studied. We sought to evaluate whether outcomes of hypotensive patients were associated with admission time and day. METHODS: We retrospectively analyzed patients from Pennsylvania Level 1 and Level 2 trauma centers with systolic blood pressure of1, weekday days; Group 2, weekday nights; Group 3, weekend days; and Group 4, weekend nights. Patient characteristics and outcomes were compared for the four groups. Adjusted mortality risks for Groups 2, 3, and 4 with Group 1 as the reference were determined using a generalized linear mixed effects model. RESULTS: After exclusions, 27 trauma centers with a total of 4937 patients were analyzed. Overall mortality was 44%. Compared with patients arriving during the day (Groups 1 and 3), those arriving at night (Groups 2 and 4) were more likely to be younger, to be male, to have lower Glasgow Coma Scale scores and blood pressures, to have penetrating injuries, and to die in the emergency room. Controlled for admission variables, odds ratios (95% confidence intervals) for Groups 2, 3, and 4 were 0.92 (0.72-1.17), 0.89 (0.65-1.23), and 0.76 (0.56-1.02), respectively, for mortality with Group 1 as reference. CONCLUSIONS: Patients arriving in shock to Pennsylvania Level 1 and Level 2 trauma centers at night or weekends had no increased mortality risk compared with weekday daytime arrivals

    International comparisons of laboratory values from the 4CE collaborative to predict COVID-19 mortality.

    No full text
    Given the growing number of prediction algorithms developed to predict COVID-19 mortality, we evaluated the transportability of a mortality prediction algorithm using a multi-national network of healthcare systems. We predicted COVID-19 mortality using baseline commonly measured laboratory values and standard demographic and clinical covariates across healthcare systems, countries, and continents. Specifically, we trained a Cox regression model with nine measured laboratory test values, standard demographics at admission, and comorbidity burden pre-admission. These models were compared at site, country, and continent level. Of the 39,969 hospitalized patients with COVID-19 (68.6% male), 5717 (14.3%) died. In the Cox model, age, albumin, AST, creatine, CRP, and white blood cell count are most predictive of mortality. The baseline covariates are more predictive of mortality during the early days of COVID-19 hospitalization. Models trained at healthcare systems with larger cohort size largely retain good transportability performance when porting to different sites. The combination of routine laboratory test values at admission along with basic demographic features can predict mortality in patients hospitalized with COVID-19. Importantly, this potentially deployable model differs from prior work by demonstrating not only consistent performance but also reliable transportability across healthcare systems in the US and Europe, highlighting the generalizability of this model and the overall approach

    Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortiumResearch in context

    No full text
    Summary: Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES −1.18 years [95% CI −2.05, −0.32]), had fewer respiratory symptoms (RD −0.15 [95% CI −0.33, −0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD −0.35 [95% CI −0.64, −0.07]), lower lymphocyte count (ES −0.16 × 109/uL [95% CI −0.30, −0.01]), lower C-reactive protein (ES −28.5 mg/L [95% CI −46.3, −10.7]), and lower troponin (ES −0.14 ng/mL [95% CI −0.26, −0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES −1.6 years [95% CI −2.5, −0.8]), had less frequent SIRS (RD −0.18 [95% CI −0.30, −0.05]), lower lymphocyte count (ES −0.39 × 109/uL [95% CI −0.52, −0.25]), lower troponin (ES −0.16 ng/mL [95% CI −0.30, −0.01]) and less frequently received anticoagulation therapy (RD −0.19 [95% CI −0.37, −0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (−1.3 days [95% CI −2.3, −0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None

    Multinational characterization of neurological phenotypes in patients hospitalized with COVID-19

    No full text
    International audienceAbstract Neurological complications worsen outcomes in COVID-19. To define the prevalence of neurological conditions among hospitalized patients with a positive SARS-CoV-2 reverse transcription polymerase chain reaction test in geographically diverse multinational populations during early pandemic, we used electronic health records (EHR) from 338 participating hospitals across 6 countries and 3 continents (January–September 2020) for a cross-sectional analysis. We assessed the frequency of International Classification of Disease code of neurological conditions by countries, healthcare systems, time before and after admission for COVID-19 and COVID-19 severity. Among 35,177 hospitalized patients with SARS-CoV-2 infection, there was an increase in the proportion with disorders of consciousness (5.8%, 95% confidence interval [CI] 3.7–7.8%, p FDR < 0.001) and unspecified disorders of the brain (8.1%, 5.7–10.5%, p FDR < 0.001) when compared to the pre-admission proportion. During hospitalization, the relative risk of disorders of consciousness (22%, 19–25%), cerebrovascular diseases (24%, 13–35%), nontraumatic intracranial hemorrhage (34%, 20–50%), encephalitis and/or myelitis (37%, 17–60%) and myopathy (72%, 67–77%) were higher for patients with severe COVID-19 when compared to those who never experienced severe COVID-19. Leveraging a multinational network to capture standardized EHR data, we highlighted the increased prevalence of central and peripheral neurological phenotypes in patients hospitalized with COVID-19, particularly among those with severe disease
    corecore