122 research outputs found

    Kitchen-Sink Enlightenment: A Review of “Grace for Amateurs”

    Full text link
    Excerpt: Here’s an honest admission: Several times while reading Lily Burana’s new book Grace for Amateurs: Field Notes on a Journey Back to Faith, I consulted the copyright page, confirming again that Grace for Amateurs was really published by Thomas Nelson, the notoriously evangelical (and, in my mind, notoriously traditional) press. After all, it wasn’t that long ago that Thomas Nelson asked another writer to remove the word “vagina” from her book, well aware that Christian readers would balk at language so closely associated with women and S-E-X. Would this same publisher be willing to support a memoir as edgy and progressive as Burana’s

    AOX a functional marker for efficient cell reprogramming under stress?

    Get PDF
    Functional markers for stress tolerance can be used in plant breeding to identify genotypes with high yield stabilities under various conditions. Thus, a good marker should show a strong correlation with favourable adaptive plant behaviour. The efficient reprogramming of target cells for yield determination is currently considered to be the most important step towards defining abiotic stress tolerance. In this Opinion article, we propose a role for the alternative oxidase (AOX) gene as a marker for genetic variation in cell reprogramming and yield stability. Evidence to support this idea comes from the metabolic role of alternative respiration under stress, the link between AOX activity and differential growth, and the single nucleotide polymorphism recently observed in AOX genes. We propose an innovative, interdisciplinary and global research strategy for future experimentation on AOX genes that could have an application in plant breeding

    Daucus carota L. – An old model for cell reprogramming gains new importance through a novel expansion pattern of alternative oxidase (AOX) genes

    Get PDF
    The paper highlights Daucus carota L. as an ideal model to complement plant stress research on Arabidopsis thaliana L. Recently, alternative oxidase (AOX) is discussed as functional marker candidate for cell reprogramming upon stress. Carrot is the most studied species for cell reprogramming and our current research reveals that it is the only one that has expanded both AOX sub-family genes. We point to recently published, but not discussed results on conserved differences in the vicinity of the most active functional site of AOX1 and AOX2, which indicate the importance of studying AOX sequence polymorphism, structure and functionality. Thus, stress-inducible experimental systems of D. carota are especially appropriate to bring research on stress tolerance a significant step forward

    Behavioral genomics of honeybee foraging and nest defense

    Get PDF
    The honeybee has been the most important insect species for study of social behavior. The recently released draft genomic sequence for the bee will accelerate honeybee behavioral genetics. Although we lack sufficient tools to manipulate this genome easily, quantitative trait loci (QTLs) that influence natural variation in behavior have been identified and tested for their effects on correlated behavioral traits. We review what is known about the genetics and physiology of two behavioral traits in honeybees, foraging specialization (pollen versus nectar), and defensive behavior, and present evidence that map-based cloning of genes is more feasible in the bee than in other metazoans. We also present bioinformatic analyses of candidate genes within QTL confidence intervals (CIs). The high recombination rate of the bee made it possible to narrow the search to regions containing only 17–61 predicted peptides for each QTL, although CIs covered large genetic distances. Knowledge of correlated behavioral traits, comparative bioinformatics, and expression assays facilitated evaluation of candidate genes. An overrepresentation of genes involved in ovarian development and insulin-like signaling components within pollen foraging QTL regions suggests that an ancestral reproductive gene network was co-opted during the evolution of foraging specialization. The major QTL influencing defensive/aggressive behavior contains orthologs of genes involved in central nervous system activity and neurogenesis. Candidates at the other two defensive-behavior QTLs include modulators of sensory signaling (Am5HT(7) serotonin receptor, AmArr4 arrestin, and GABA-B-R1 receptor). These studies are the first step in linking natural variation in honeybee social behavior to the identification of underlying genes

    Repertoire, Genealogy and Genomic Organization of Cruzipain and Homologous Genes in Trypanosoma cruzi, T. cruzi-Like and Other Trypanosome Species

    Get PDF
    Trypanosoma cruzi, the agent of Chagas disease, is a complex of genetically diverse isolates highly phylogenetically related to T. cruzi-like species, Trypanosoma cruzi marinkellei and Trypanosoma dionisii, all sharing morphology of blood and culture forms and development within cells. However, they differ in hosts, vectors and pathogenicity: T. cruzi is a human pathogen infective to virtually all mammals whilst the other two species are non-pathogenic and bat restricted. Previous studies suggest that variations in expression levels and genetic diversity of cruzipain, the major isoform of cathepsin L-like (CATL) enzymes of T. cruzi, correlate with levels of cellular invasion, differentiation, virulence and pathogenicity of distinct strains. In this study, we compared 80 sequences of genes encoding cruzipain from 25 T. cruzi isolates representative of all discrete typing units (DTUs TcI-TcVI) and the new genotype Tcbat and 10 sequences of homologous genes from other species. The catalytic domain repertoires diverged according to DTUs and trypanosome species. Relatively homogeneous sequences are found within and among isolates of the same DTU except TcV and TcVI, which displayed sequences unique or identical to those of TcII and TcIII, supporting their origin from the hybridization between these two DTUs. In network genealogies, sequences from T. cruzi clustered tightly together and closer to T. c. marinkellei than to T. dionisii and largely differed from homologues of T. rangeli and T. b. brucei. Here, analysis of isolates representative of the overall biological and genetic diversity of T. cruzi and closest T. cruzi-like species evidenced DTU- and species-specific polymorphisms corroborating phylogenetic relationships inferred with other genes. Comparison of both phylogenetically close and distant trypanosomes is valuable to understand host-parasite interactions, virulence and pathogenicity. Our findings corroborate cruzipain as valuable target for drugs, vaccine, diagnostic and genotyping approaches
    corecore