1,043 research outputs found

    A Hierarchical Bayesian Framework for Constructing Sparsity-inducing Priors

    Full text link
    Variable selection techniques have become increasingly popular amongst statisticians due to an increased number of regression and classification applications involving high-dimensional data where we expect some predictors to be unimportant. In this context, Bayesian variable selection techniques involving Markov chain Monte Carlo exploration of the posterior distribution over models can be prohibitively computationally expensive and so there has been attention paid to quasi-Bayesian approaches such as maximum a posteriori (MAP) estimation using priors that induce sparsity in such estimates. We focus on this latter approach, expanding on the hierarchies proposed to date to provide a Bayesian interpretation and generalization of state-of-the-art penalized optimization approaches and providing simultaneously a natural way to include prior information about parameters within this framework. We give examples of how to use this hierarchy to compute MAP estimates for linear and logistic regression as well as sparse precision-matrix estimates in Gaussian graphical models. In addition, an adaptive group lasso method is derived using the framework.Comment: Submitted for publication; corrected typo

    On why the Iron K-shell absorption in AGN is not a signature of the local Warm/Hot Intergalactic Medium

    Full text link
    We present a comparison between the 2001 XMM-Newton and 2005 Suzaku observations of the quasar, PG1211+143 at z=0.0809. Variability is observed in the 7 keV iron K-shell absorption line (at 7.6 keV in the quasar frame), which is significantly weaker in 2005 than during the 2001 XMM-Newton observation. From a recombination timescale of <4 years, this implies an absorber density n>0.004 particles/cm3, while the absorber column is 5e22<N_H <1 1e24 particles/cm2. Thus the sizescale of the absorber is too compact (pc scale) and the surface brightness of the dense gas too high (by 9-10 orders of magnitude) to arise from local hot gas, such as the local bubble, group or Warm/Hot Intergalactic Medium (WHIM), as suggested by McKernan et al. (2004, 2005). Instead the iron K-shell absorption must be associated with an AGN outflow with mildly relativistic velocities. Finally we show that the the association of the absorption in PG1211+143 with local hot gas is simply a coincidence, the comparison between the recession and iron K absorber outflow velocities in other AGN does not reveal a one to one kinematic correlation.Comment: accepted for publication in MNRAS LETTERS. 5 pages, 4 figure

    Collapsible Pushdown Parity Games

    Get PDF
    International audienceThis paper studies a large class of two-player perfect-information turn-based parity games on infinite graphs, namely those generated by collapsible pushdown automata. The main motivation for studying these games comes from the connections from collapsible pushdown automata and higher-order recursion schemes, both models being equi-expressive for generating infinite trees. Our main result is to establish the decidability of such games and to provide an effective representation of the winning region as well as of a winning strategy. Thus, the results obtained here provide all necessary tools for an in-depth study of logical properties of trees generated by collapsible pushdown automata/recursion schemes

    Identification of ASYNAPTIC4, a Component of the Meiotic Chromosome Axis

    Get PDF
    International audienceDuring the leptotene stage of prophase I of meiosis, chromatids become organized into a linear looped array via a protein axis that forms along the loop bases. Establishment of the axis is essential for the subsequent synapsis of the homologous chromosome pairs and the progression of recombination to form genetic crossovers. Here, we describe ASYNAPTIC4 (ASY4), a meiotic axis protein in Arabidopsis (Arabidopsis thaliana). ASY4 is a small coiled-coil protein that exhibits limited sequence similarity with the carboxyl-terminal region of the axis protein ASY3. We used enhanced yellow fluorescent protein-tagged ASY4 to show that ASY4 localizes to the chromosome axis throughout prophase I. Bimolecular fluorescence complementation revealed that ASY4 interacts with ASY1 and ASY3, and yeast two-hybrid analysis confirmed a direct interaction between ASY4 and ASY3. Mutants lacking full-length ASY4 exhibited defective axis formation and were unable to complete synapsis. Although the initiation of recombination appeared to be unaffected in the asy4 mutant, the number of crossovers was reduced significantly, and crossovers tended to group in the distal parts of the chromosomes. We conclude that ASY4 is required for normal axis and crossover formation. Furthermore, our data suggest that ASY3/ASY4 are the functional homologs of the mammalian SYCP2/SYCP3 axial components

    The long-term evolution of the accreting millisecond X-ray pulsar Swift J1756.9-2508

    Full text link
    We present a timing analysis of the 2009 outburst of the accreting millisecond X-ray pulsar Swift J1756.9-2508, and a re-analysis of the 2007 outburst. The source shows a short recurrence time of only ~2 years between outbursts. Thanks to the approximately 2 year long baseline of data, we can constrain the magnetic field of the neutron star to be 0.4x10^8 G < B < 9x10^8 G, which is within the range of typical accreting millisecond pulsars. The 2009 timing analysis allows us to put constraints on the accretion torque: the spin frequency derivative within the outburst has an upper limit of $|\dot{\nu}| < 3x10^-13 Hz/s at the 95% confidence level. A study of pulse profiles and their evolution during the outburst is analyzed, suggesting a systematic change of shape that depends on the outburst phase.Comment: 7 pages, 4 figures, submitted to MNRA
    • …
    corecore