2 research outputs found

    Power Dissipation of WSe<sub>2</sub> Field-Effect Transistors Probed by Low-Frequency Raman Thermometry

    No full text
    The ongoing shrinkage in the size of two-dimensional (2D) electronic circuitry results in high power densities during device operation, which could cause a significant temperature rise within 2D channels. One challenge in Raman thermometry of 2D materials is that the commonly used high-frequency modes do not precisely represent the temperature rise in some 2D materials because of peak broadening and intensity weakening at elevated temperatures. In this work, we show that a low-frequency E<sub>2g</sub><sup>2</sup> shear mode can be used to accurately extract temperature and measure thermal boundary conductance (TBC) in back-gated tungsten diselenide (WSe<sub>2</sub>) field-effect transistors, whereas the high-frequency peaks (E<sub>2g</sub><sup>1</sup> and A<sub>1g</sub>) fail to provide reliable thermal information. Our calculations indicate that the broadening of high-frequency Raman-active modes is primarily driven by anharmonic decay into pairs of longitudinal acoustic phonons, resulting in a weak coupling with out-of-plane flexural acoustic phonons that are responsible for the heat transfer to the substrate. We found that the TBC at the interface of WSe<sub>2</sub> and Si/SiO<sub>2</sub> substrate is ∼16 MW/m<sup>2</sup> K, depends on the number of WSe<sub>2</sub> layers, and peaks for 3–4 layer stacks. Furthermore, the TBC to the substrate is the highest from the layers closest to it, with each additional layer adding thermal resistance. We conclude that the location where heat dissipated in a multilayer stack is as important to device reliability as the total TBC

    Bimodal Phonon Scattering in Graphene Grain Boundaries

    No full text
    Graphene has served as the model 2D system for over a decade, and the effects of grain boundaries (GBs) on its electrical and mechanical properties are very well investigated. However, no direct measurement of the correlation between thermal transport and graphene GBs has been reported. Here, we report a simultaneous comparison of thermal transport in supported single crystalline graphene to thermal transport across an individual graphene GB. Our experiments show that thermal conductance (per unit area) through an isolated GB can be up to an order of magnitude lower than the theoretically anticipated values. Our measurements are supported by Boltzmann transport modeling which uncovers a new bimodal phonon scattering phenomenon initiated by the GB structure. In this novel scattering mechanism, boundary roughness scattering dominates the phonon transport in low-mismatch GBs, while for higher mismatch angles there is an additional resistance caused by the formation of a disordered region at the GB. Nonequilibrium molecular dynamics simulations verify that the amount of disorder in the GB region is the determining factor in impeding thermal transport across GBs
    corecore