69 research outputs found

    Serum Interleukin-36 α as a Candidate Biomarker to Distinguish Behçet’s Syndrome and Psoriatic Arthritis

    Get PDF
    Behçet’s syndrome (BS) is a rare systemic vasculitis characterized by different clinical manifestations. As no specific laboratory tests exist, the diagnosis relies on clinical criteria, and the differential diagnosis with other inflammatory diseases can be challenging. Indeed, in a relatively small proportion of patients, BS symptoms include only mucocutaneous, articular, gastrointestinal, and non-typical ocular manifestations, which are frequently found also in psoriatic arthritis (PsA). We investigate the ability of serum interleukin (IL)-36α—a pro-inflammatory cytokine involved in cutaneous and articular inflammatory diseases—to differentiate BS from PsA. A cross-sectional study was performed on 90 patients with BS, 80 with PsA and 80 healthy controls. Significantly lower IL-36α concentrations were found in patients with BS as compared to PsA, although in both groups IL-36α was significantly increased compared to healthy controls. An empirical cut-off of 420.6 pg/mL displayed a specificity of 0.93, with a sensitivity of 0.70 (AUC 0.82) in discriminating PsA from BS. This cut-off displayed a good diagnostic performance also in BS patients lacking highly specific BS manifestations. Our results indicate that IL-36α might be involved in the pathogenesis of both BS and PsA, and might be a candidate biomarker to support the differential diagnosis of BS

    Using metallic noncontact atomic force microscope tips for imaging insulators and polar molecules: tip characterization and imaging mechanisms

    Get PDF
    We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and theoretical simulations were carried out for the NiO(001) surface as well as adsorbed CO and Co-Salen molecules using Cr-coated Si tips. The experimental results and density functional theory calculations confirm that metallic tips possess a permanent electric dipole moment with its positive end oriented toward the sample. By analyzing the experimental data, we could directly determine the dipole moment of the Cr-coated tip. A model representing the metallic tip as a point dipole is described and shown to produce NC-AFM images of individual CO molecules adsorbed onto NiO(001) in good quantitative agreement with experimental results. Finally, we discuss methods for characterizing the structure of metal-coated tips and the application of these tips to imaging dipoles of large adsorbed molecules. © 2014 American Chemical Society

    Modeling global cosmogenic nuclide production rates through first principles

    No full text
    Thesis (Ph.D.)--University of Washington, 2013The work contained in this thesis is focused on utilizing radiation transport code software as the basis for developing a well validated, first-principles model of global terrestrial cosmogenic nuclide production rates. The state-of-the-art radiation transport code, MCNPX, is utilized to model the terrestrial radiation field. Folding the radiation field neutron and proton results with cosmogenic nuclide production cross-sections yields production rates. This comprehensive, first-principles model is used to investigate characteristics of cosmogenic nuclide production. The goal of the work is to constrain uncertainties in cosmogenic nuclides by better understanding production systematics. Greater understanding of cosmogenic nuclide production rate systematics will assist in constraining uncertainties in cosmogenic nuclide production rate scaling, thereby reducing uncertainties in calculations based on sample nuclide concentrations exposure ages, erosion rates, and burial dating. Furthermore, novel uses of cosmogenic nuclides, currently unachievable due to uncertainties, will be enabled by further constraining these. The model is benchmarked against Dr. Paul Goldhagen's ER-2 aircraft neutron monitor measurements, the Knyahinya meteorite in-situ cosmogenic nuclides, the Beacon Heights sandstone core measurements, and estimated sea level production rates. In this work, I examine: the production rates of each commonly used cosmogenic nuclide as a function of altitude and latitude; the angular distribution of nuclide-producing cosmic-ray particles as a function of altitude and latitude; subsurface production rate systematics; and the production of 36Cl in both the atmosphere and the oceans

    Drug recall procedures: “There ‘oughta’ be a law”

    No full text

    Chlorine-36 in seawater

    No full text
    Natural cosmogenic 36Cl found in seawater originates from spallation of atmospheric 40Ar, capture of secondary cosmic-ray neutrons by dissolved 35Cl, and river runoff which contains 36Cl produced in situ over the surface of the continents. The long residence time of chloride in the ocean and long half-life of 36Cl compared to the oceanic mixing time should result in a homogenous 36Cl/Cl ratio throughout the ocean. Production by neutron capture in the course of nuclear weapons testing should be insignificant averaged over the oceans as a whole, but may have led to regions of elevated 36Cl concentration. Previous attempts to measure the 36Cl/Cl ratio of seawater have been hindered by interferences, contamination, or insufficient analytic sensitivity. Here we report preliminary measurements on seawater samples, which demonstrate that the 36Cl/Cl ratio is 0.5 ± 0.3 × 10-15, in reasonable agreement with calculated contributions from the sources listed above
    corecore