2,726 research outputs found
Phenomenon of Alfvénic vortex shedding
Generation of Alfvenic (magnetohydrodynamic) vortices by the interaction of compressible plasma flows with magnetic-field-aligned blunt obstacles is modeled in terms of magnetohydrodynamics. It is found that periodic shedding of vortices with opposite vorticity is a robust feature of the interaction in a broad range of plasma parameters: for plasma beta from 0.025 to 0.5, and for the flow speeds from 0.1 to 0.99 of the fast magnetoacoustic speed. The Strouhal number is the dimensionless ratio of the blunt body diameter to the product of the period of vortex shedding and the inflow speed. It is found to be consistently in the range 0.15-0.25 in the whole range of parameters. The induced Alfvenic vortices are compressible and contain spiral-armed perturbations of the magnetic field strength and plasma mass density up to 50%-60% of the background values. The generated electric current also has the spiral-armed structuring
Observational properties of a kink unstable coronal loop
Aims. Previous work on the dynamics of the kink instability has concentrated on the evolution of the magnetic field and associated current sheets. Here we aim to determine the observational consequences of the kink instability in short coronal loops, particularly what images TRACE would record of such an instability. This paper concentrates on the internal m = 1 mode where the kink structure
of the instability may not be apparent from the global field shape. This is most relevant to the observation of active region brightenings and coronal bright points.
Methods. An existing fluid code was modified to include the TRACE temperature response function in order to calculate temporally and spatially averaged, line of sight images in the 171, 195 and 284 Ã… band passes for straight, kink unstable flux tubes.
Results. Two new fluid effects of the kink instability are discovered: the circular enhancement of the density at the foot points and the appearance of a low density band running across the flux tube. The second of these effects is shown to be imagable by TRACE and hence would be a good candidate observational signature for an internal m = 1 kink unstable loop
Flare-generated acoustic oscillations in solar and stellar coronal loops
Long period longitudinal oscillations of a flaring coronal loop are studied numerically. In the recent work of
Nakariakov et al. (2004) it has been shown that the time dependence of density and velocity in a flaring loop contain pronounced quasi-harmonic oscillations associated with the 2nd harmonic of a standing slow magnetoacoustic wave. In this work we investigate the physical nature of these oscillations in greater detail, namely, their spectrum (using the periodogram technique) and how heat positioning affects mode excitation. We found that excitation of such oscillations is practically independent
of the location of the heat deposition in the loop. Because of the change of the background temperature and density, the phase shift between the density and velocity perturbations is not exactly a quarter of the period; it varies along the loop and is time dependent, especially in the case of one footpoint (asymmetric) heating
Heating of the magnetized solar chromosphere by partial ionization effects
In this paper, we study the heating of the magnetized solar chromosphere
induced by the large fraction of neutral atoms present in this layer. The
presence of neutrals, together with the decrease with height of the collisional
coupling, leads to deviations from the classical MHD behavior of the
chromospheric plasma. A relative net motion appears between the neutral and
ionized components, usually referred to as ambipolar diffusion. The dissipation
of currents in the chromosphere is enhanced orders of magnitude due to the
action of ambipolar diffusion, as compared to the standard ohmic diffusion. We
propose that a significant amount of magnetic energy can be released to the
chromosphere just by existing force-free 10--40 G magnetic fields there. As a
consequence, we conclude that ambipolar diffusion is an important process that
should be included in chromospheric heating models, as it has the potential to
rapidly heat the chromosphere. We perform analytical estimations and numerical
simulations to prove this idea.Comment: Accepted for publication by The Astrophysical Journa
Radiative hydrodynamic modeling of the Bastille-Day flare (14 July, 2000). I, Numerical simulations
A 1D loop radiative hydrodynamic model that incorporates the effects of gravitational stratification, heat conduction,
radiative losses, external heat input, presence of helium, and Braginskii viscosity is used to simulate elementary flare loops. The physical parameters for the input are taken from observations of the Bastille-Day flare of 2000 July 14. The present analysis shows that: a) the obtained maximum values of the electron density can be considerably higher (4.2 × 10 11 cm −3 or more) in the case of footpoint heating than in the case of apex heating (2.5 × 10 11 cm −3); b) the average cooling time after the flare peak takes less time in the case of footpoint heating than in the case of apex heating; c) the peak apex temperatures are significantly lower (by about 10 MK) for the case of footpoint heating than for apex heating (for the same average loop temperature of about 30 MK). This characteristic would allow to discriminate between different heating positioning; d) in both cases (of apex and footpoint heating), the maximum obtained apex temperature T
max is practically independent of the heating duration σ t , but scales directly with the heating rate E H0 ; e) the maximum obtained densities at the loop apex, n max e,
increase with the heating rate E H0 and heating duration σ t for both footpoint and apex heating. In Paper II we will use the outputs of these hydrodynamic simulations, which cover a wide range of the parameter space of heating rates and durations, as an input for forward-fitting of the multi-loop arcade of the Bastille-day flare
Acoustic oscillations in solar and stellar flaring loops
Evolution of a coronal loop in response to an impulsive energy release is numerically modelled. It is shown that the loop density evolution curves exhibit quasi-periodic perturbations with the periods given approximately by the ratio of the loop length to the average sound speed, associated with the second standing harmonics of an acoustic wave. The density perturbations have a maximum near the loop apex. The corresponding field-aligned flows have a node near the apex. We suggest that the quasi-periodic pulsations with periods in the range 10-300 s, frequently observed in flaring coronal loops in the radio, visible light and X-ray bands, may be produced by the second standing harmonic of the acoustic mode
Sausage oscillations of coronal loops
Aims. Analytical theory predicts the existence of trapped global (or fundamental) sausage fast magnetoacoustic modes in thick and dense coronal loops only, with the periods estimated as the ratio of double the loop length and the Alfvén speed outside the loop. We extend this study to the leaking regime, considering global sausage modes of long loops with small density contrasts.
Methods. Anti-symmetric fast magnetoacoustic perturbations (sausage, or m = 0 modes) of a low β plasma slab with the symmetric Epstein profile of plasma density are modelled numerically.
Results. It was found that long loops with sufficiently small density contrast can support global sausage leaky modes of detectable quality. The periods of the leaky modes are found to be approximately determined by the loop length and the external Alfvén speed. If the loop length can be estimated from imaging observations, the observed period of this mode provides us with the information about the Alfvén speed outside the loop. For typical flaring coronal loops, the estimated periods of the global sausage modes are
about 5−60 s
Collisional and viscous damping of MHD waves in partially ionized plasmas of the solar atmosphere
Magnetohydrodynamic (MHD) waves are widely considered as a possible source of heating for various parts of the outer solar atmosphere. Among the main energy dissipation mechanisms which convert the energy of damped MHD waves into thermal energy are collisional dissipation(resistivity) and viscosity. The presence of neutral atoms in the partially ionized plasmas of the solar photosphere, chromosphere and prominences enhances the efficiency of both these energy dissipation mechanisms.
A comparative study of the efficiency of MHD wave damping in solar plasmas due to collisional and viscous energy dissipation mechanisms is presented here. The damping rates are taken from Braginskii 1965 and applied to the VAL C model of the quiet Sun (Vernazza et al. 1981). These estimations show which of the mechanisms are dominant in which regions. In general the correct description of MHD wave damping requires the consideration of all energy dissipation mechanisms via the inclusion of the appropriate terms in the generalized Ohm’s law, the momentum, energy and induction equations. Specific forms of the generalized Ohm’s Law and induction equation are presented that are suitable for regions of the solar atmosphere which are
partially ionised
Stabilisation of BGK modes by relativistic effects
Context. We examine plasma thermalisation processes in the foreshock region of astrophysical shocks within a fully kinetic and self-consistent treatment. We concentrate on proton beam driven electrostatic processes, which are thought to play a key role in the beam relaxation and the particle acceleration. Our results have implications for the effectiveness of electron surfing acceleration and
the creation of the required energetic seed population for first order Fermi acceleration at the shock front.
Aims. We investigate the acceleration of electrons via their interaction with electrostatic waves, driven by the relativistic Buneman instability, in a system dominated by counter-propagating proton beams.
Methods. We adopt a kinetic Vlasov-Poisson description of the plasma on a fixed Eulerian grid and observe the growth and saturation of electrostatic waves for a range of proton beam velocities, from 0.15c to 0.9c.
Results. We can report a reduced stability of the electrostatic wave (ESW) with increasing non-relativistic beam velocities and an improved wave stability for increasing relativistic beam velocities, both in accordance with previous findings. At the highest beam speeds, we find the system to be stable again for a period of ≈160 plasma periods. Furthermore, the high phase space resolution
of the Eulerian Vlasov approach reveals processes that could not be seen previously with PIC simulations. We observe a, to our knowledge, previously unreported secondary electron acceleration mechanism at low beam speeds. We believe that it is the result of parametric couplings to produce high phase velocity ESW’s which then trap electrons, accelerating them to higher energies. This
allows electrons in our simulation study to achieve the injection energy required for Fermi acceleration, for beam speeds as low as 0.15c in unmagnetised plasma
- …