379 research outputs found

    S-Nitrosation of Cellular Proteins by NO Donors in Rat Embryonic Fibroblast 3Y1 Cells: Factors Affecting S-Nitrosation

    Get PDF
    The mechanism of protein S-nitrosation in cells is not fully understood. Using rat 3Y1 cells, we addressed this issue. Among S-nitrosothiols and NO donors tested, only S-nitrosocysteine (CysNO) induced S-nitrosation when exposed in Hanks' balanced salt solution (HBSS) and not in serum-containing general culture medium. In HBSS, NO release from CysNO was almost completely abolished by sequestering metal ions with a metal chelator without affecting cellular S-nitrosation. In contrast, L-leucine, a substrate of L-type amino acid transporters (LATs), significantly inhibited S-nitrosation. The absence of S-nitrosation with CysNO in general culture medium resulted not only from a competition with amino acids in the medium for LATs but also from transnitrosation of cysteine residues in serum albumin. Collectively, these results suggest that in simple buffered saline, CysNO-dependent S-nitrosation occurs through a cellular incorporation-dependent mechanism, but if it occurs in general culture media, it may be through an NO-dependent mechanism

    Analysis of the phenomenon of speculative trading in one of its basic manifestations: postage stamp bubbles

    Full text link
    We document and analyze the empirical facts concerning one of the clearest evidence of speculation in financial trading as observed in the postage collection stamp market. We unravel some of the mechanisms of speculative behavior which emphasize the role of fancy and collective behavior. In our conclusion, we propose a classification of speculative markets based on two parameters, namely the amplitude of the price peak and a second parameter that measures its ``sharpness''. This study is offered to anchor modeling efforts to realistic market constraints and observations.Comment: 9 pages, 5 figures and 2 tables, in press in Int. J. Mod. Phys.

    Efficacy of soft palatal augmentation prosthesis for oral functional rehabilitation in patients with dysarthria and dysphagia: a protocol for a randomised controlled trial

    Get PDF
    Introduction Palatal augmentation prosthesis (PAP) is used in patients with articulation and swallowing disorders caused by postoperative loss of tongue tissue due to tongue cancer, cerebrovascular disease sequelae and age-related hypofunction. We have previously reported a newly designed soft PAP fabricated using an thermoplastic material that is particularly appropriate for early intervention. However, the effect of soft PAP on oral function improvement remains to be elucidated. The aim of this study is to investigate whether soft PAP can improve dysarthria and dysphagia occurring as cerebrovascular disease sequelae. Methods and analysis This prospective, randomised, controlled trial will compare the immediate and training effects of rehabilitation using soft PAP with those of rehabilitation without using it. Primary outcomes are the single-word intelligibility test score and pharyngeal transit time (PTT). Secondary outcomes are tongue function (evaluated based on maximum tongue pressure, repetitions of tongue pressure and endurance of tongue pressure), articulation function (evaluated based on speech intelligibility, oral diadochokinesis, Voice-Related Quality of Life (V-RQOL)) and swallowing function (evaluated using Eating Assessment Tool-10). The study results will help determine the efficacy of Soft PAP in improving functional outcomes of word intelligibility and PTT. We hypothesised that early rehabilitation using Soft PAP would more effectively improve articulation and swallowing function compared with conventional rehabilitation without using soft PAP. Ethics and dissemination Ethical approval was obtained from the Okayama University Certified Review Board. The study findings will be published in an open access, peer-reviewed journal and presented at relevant conferences and research meetings

    Multivesicular Body Formation Requires OSBP–Related Proteins and Cholesterol

    Get PDF
    In eukaryotes, different subcellular organelles have distinct cholesterol concentrations, which is thought to be critical for biological functions. Oxysterol-binding protein-related proteins (ORPs) have been assumed to mediate nonvesicular cholesterol trafficking in cells; however, their in vivo functions and therefore the biological significance of cholesterol in each organelle are not fully understood. Here, by generating deletion mutants of ORPs in Caenorhabditis elegans, we show that ORPs are required for the formation and function of multivesicular bodies (MVBs). In an RNAi enhancer screen using obr quadruple mutants (obr-1; -2; -3; -4), we found that MVB–related genes show strong genetic interactions with the obr genes. In obr quadruple mutants, late endosomes/lysosomes are enlarged and membrane protein degradation is retarded, although endocytosed soluble proteins are normally delivered to lysosomes and degraded. We also found that the cholesterol content of late endosomes/lysosomes is reduced in the mutants. In wild-type worms, cholesterol restriction induces the formation of enlarged late endosomes/lysosomes, as observed in obr quadruple mutants, and increases embryonic lethality upon knockdown of MVB–related genes. Finally, we show that knockdown of ORP1L, a mammalian ORP family member, induces the formation of enlarged MVBs in HeLa cells. Our in vivo findings suggest that the proper cholesterol level of late endosomes/lysosomes generated by ORPs is required for normal MVB formation and MVB–mediated membrane protein degradation

    高非抱合型ビリルビン血症に対する光療法における青色と緑色光を混合した光療法は青色光単色と治療効果は同等であり、かつ光酸化ストレス反応を軽減する : Gunn ratモデルにおける検討

    Get PDF
    OBJECTIVE:Phototherapy using blue light-emitting diodes (LED) is effective against neonatal jaundice. However, green light phototherapy also reduces unconjugated jaundice. We aimed to determine whether mixed blue and green light can relieve jaundice with minimal oxidative stress as effectively as either blue or green light alone in a rat model. METHODS:Gunn rats were exposed to phototherapy with blue (420-520 nm), filtered blue (FB; 440-520 nm without<440-nm wavelengths, FB50 (half the irradiance of filtered blue), mixed (filtered 50% blue and 50% green), and green (490-590 nm) LED irradiation for 24h. The effects of phototherapy are expressed as ratios of serum total (TB) and unbound (UB) bilirubin before and after exposure to each LED. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG) was measured by HPLC before and after exposure to each LED to determine photo-oxidative stress. RESULTS:Values 1.00), respectively. CONCLUSIONS:Blue plus green phototherapy is as effective as blue phototherapy and it attenuates irradiation-induced oxidative stress. PRACTICE IMPLICATIONS:Combined blue and green spectra might be effective against neonatal hyperbilirubinemia.博士(医学)・乙第1371号・平成27年11月27日Copyright © 2015 Elsevier Ireland Ltd. All rights reserved

    Exendin-4, a glucagon-like peptide-1 receptor agonist, provides neuroprotection in mice transient focal cerebral ischemia

    Get PDF
    Glucagon-like peptide-1 (GLP-1) is an incretin hormone known to stimulate glucose-dependent insulin secretion. The GLP-1 receptor agonist, exendin-4, has similar properties to GLP-1 and is currently in clinical use for type 2 diabetes mellitus. As GLP-1 and exendin-4 confer cardioprotection after myocardial infarction, this study was designed to assess the neuroprotective effects of exendin-4 against cerebral ischemia–reperfusion injury. Mice received a transvenous injection of exendin-4, after a 60-minute focal cerebral ischemia. Exendin-4-treated vehicle and sham groups were evaluated for infarct volume, neurologic deficit score, various physiologic parameters, and immunohistochemical analyses at several time points after ischemia. Exendin-4 treatment significantly reduced infarct volume and improved functional deficit. It also significantly suppressed oxidative stress, inflammatory response, and cell death after reperfusion. Furthermore, intracellular cyclic AMP (cAMP) levels were slightly higher in the exendin-4 group than in the vehicle group. No serial changes were noted in insulin and glucose levels in both groups. This study suggested that exendin-4 provides neuroprotection against ischemic injury and that this action is probably mediated through increased intracellular cAMP levels. Exendin-4 is potentially useful in the treatment of acute ischemic stroke

    Broken Screw Rotational Symmetry in the Near-Surface Electronic Structure of ABAB-Stacked Crystals

    Full text link
    We investigate the electronic structure of 2H2H-NbS2\mathrm{Nb}\mathrm{S}_2 and hhBN\mathrm{BN} by angle-resolved photoemission spectroscopy (ARPES) and photoemission intensity calculations. Although in bulk form, these materials are expected to exhibit band degeneracy in the kz=π/ck_z=\pi/c plane due to screw rotation and time-reversal symmetries, we observe gapped band dispersion near the surface. We extract from first-principles calculations the near-surface electronic structure probed by ARPES and find that the calculated photoemission spectra from the near-surface region reproduce the gapped ARPES spectra. Our results show that the near-surface electronic structure can be qualitatively different from the bulk one due to partially broken nonsymmorphic symmetries.Comment: 6+11 pages, 4+13 figure

    Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid production

    Get PDF
    Autotaxin (ATX) is a tumor cell motility–stimulating factor, originally isolated from melanoma cell supernatants. ATX had been proposed to mediate its effects through 5′-nucleotide pyrophosphatase and phosphodiesterase activities. However, the ATX substrate mediating the increase in cellular motility remains to be identified. Here, we demonstrated that lysophospholipase D (lysoPLD) purified from fetal bovine serum, which catalyzes the production of the bioactive phospholipid mediator, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC), is identical to ATX. The Km value of ATX for LPC was 25-fold lower than that for the synthetic nucleoside substrate, p-nitrophenyl-tri-monophosphate. LPA mediates multiple biological functions including cytoskeletal reorganization, chemotaxis, and cell growth through activation of specific G protein–coupled receptors. Recombinant ATX, particularly in the presence of LPC, dramatically increased chemotaxis and proliferation of multiple different cell lines. Moreover, we demonstrate that several cancer cell lines release significant amounts of LPC, a substrate for ATX, into the culture medium. The demonstration that ATX and lysoPLD are identical suggests that autocrine or paracrine production of LPA contributes to tumor cell motility, survival, and proliferation. It also provides potential novel targets for therapy of pathophysiological states including cancer
    corecore