Broken Screw Rotational Symmetry in the Near-Surface Electronic Structure of ABAB-Stacked Crystals

Abstract

We investigate the electronic structure of 2H2H-NbS2\mathrm{Nb}\mathrm{S}_2 and hhBN\mathrm{BN} by angle-resolved photoemission spectroscopy (ARPES) and photoemission intensity calculations. Although in bulk form, these materials are expected to exhibit band degeneracy in the kz=Ï€/ck_z=\pi/c plane due to screw rotation and time-reversal symmetries, we observe gapped band dispersion near the surface. We extract from first-principles calculations the near-surface electronic structure probed by ARPES and find that the calculated photoemission spectra from the near-surface region reproduce the gapped ARPES spectra. Our results show that the near-surface electronic structure can be qualitatively different from the bulk one due to partially broken nonsymmorphic symmetries.Comment: 6+11 pages, 4+13 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions