1 research outputs found

    Thermodynamic Signatures of the Antigen Binding Site of mAb 447–52D Targeting the Third Variable Region of HIV‑1 gp120

    No full text
    The third variable region (V3) of HIV-1 gp120 plays a key role in viral entry into host cells; thus, it is a potential target for vaccine design. Human monoclonal antibody (mAb) 447–52D is one of the most broadly and potently neutralizing anti-V3 mAbs. We further characterized the 447–52D epitope by determining a high-resolution crystal structure of the Fab fragment in complex with a cyclic V3 and interrogated the antigen–antibody interaction by a combination of site-specific mutagenesis, isothermal titration calorimetry (ITC) and neutralization assays. We found that 447–52D’s neutralization capability is correlated with its binding affinity and at 25 °C the Gibbs free binding energy is composed of a large enthalpic component and a small favorable entropic component. The large enthalpic contribution is due to (i) an extensive hydrogen bond network, (ii) a π–cation sandwiching the V3 crown apex residue Arg<sup>315</sup>, and (iii) a salt bridge between the 447–52D heavy chain residue Asp<sup>H95</sup> and Arg<sup>315</sup>. Arg<sup>315</sup> is often harbored by clade B viruses; thus, our data explained why 447–52D preferentially neutralizes clade B viruses. Interrogation of the thermodynamic signatures of residues at the antigen binding interface gives key insights into their contributions in the antigen–antibody interaction
    corecore