284 research outputs found

    Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton

    Get PDF
    It has become widely accepted that adhesion receptors can either directly activate, or significantly modulate, many of the signaling cascades initiated by circulating growth factors. An interesting recent development is the realization that adhesion receptors and their cytoskeletal partners can regulate the trafficking of signaling proteins between the cytoplasm and nucleus. Cell adhesion molecule control of nucleocytoplasmic trafficking allows adhesion to influence many cell decisions, and highlights the diversity of nuclear import and export mechanisms

    Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton

    Get PDF
    It has become widely accepted that adhesion receptors can either directly activate, or significantly modulate, many of the signaling cascades initiated by circulating growth factors. An interesting recent development is the realization that adhesion receptors and their cytoskeletal partners can regulate the trafficking of signaling proteins between the cytoplasm and nucleus. Cell adhesion molecule control of nucleocytoplasmic trafficking allows adhesion to influence many cell decisions, and highlights the diversity of nuclear import and export mechanisms

    Dysregulated GPCR Signaling and Therapeutic Options in Uveal Melanoma.

    Get PDF
    Uveal melanoma is the most common primary intraocular malignant tumor in adults and arises from the transformation of melanocytes in the uveal tract. Even after treatment of the primary tumor, up to 50% of patients succumb to metastatic disease. The liver is the predominant organ of metastasis. There is an important need to provide effective treatment options for advanced stage uveal melanoma. To provide the preclinical basis for new treatments, it is important to understand the molecular underpinnings of the disease. Recent genomic studies have shown that mutations within components of G protein-coupled receptor (GPCR) signaling are early events associated with approximately 98% of uveal melanomas

    Mechanisms of Resistance to RAF Inhibitors in Melanoma

    Get PDF
    The recent RAF inhibitor trial with PLX4032/RG7204 in late-stage mutant B-RAF melanoma patients has been lauded as a success story for personalized cancer therapy since short-term clinical responses were observed in the majority of patients. However, initial responses were followed by subsequent tumor re-growth, and a subset of patients showed intrinsic resistance. Bi-directional translational efforts are now essential to determine the mechanisms underlying acquired/secondary and intrinsic resistance to RAF inhibitors

    Gasdermin pores permeabilize mitochondria to augment caspase-3 activation during apoptosis and inflammasome activation.

    Get PDF
    Gasdermin E (GSDME/DFNA5) cleavage by caspase-3 liberates the GSDME-N domain, which mediates pyroptosis by forming pores in the plasma membrane. Here we show that GSDME-N also permeabilizes the mitochondrial membrane, releasing cytochrome c and activating the apoptosome. Cytochrome c release and caspase-3 activation in response to intrinsic and extrinsic apoptotic stimuli are significantly reduced in GSDME-deficient cells comparing with wild type cells. GSDME deficiency also accelerates cell growth in culture and in a mouse model of melanoma. Phosphomimetic mutation of the highly conserved phosphorylatable Thr6 residue of GSDME, inhibits its pore-forming activity, thus uncovering a potential mechanism by which GSDME might be regulated. Like GSDME-N, inflammasome-generated gasdermin D-N (GSDMD-N), can also permeabilize the mitochondria linking inflammasome activation to downstream activation of the apoptosome. Collectively, our results point to a role of gasdermin proteins in targeting the mitochondria to promote cytochrome c release to augment the mitochondrial apoptotic pathway

    NF-κB Regulation of c-FLIP Promotes TNFα-Mediated RAF Inhibitor Resistance in Melanoma

    Get PDF
    Targeted inhibitors elicit heterogeneous clinical responses in genetically stratified groups of patients. Although most studies focus on tumor intrinsic properties, factors in the tumor microenvironment were recently found to modulate the response to inhibitors. Here, we show that in cutaneous BRAF V600E melanoma, the cytokine tumor necrosis factor-α (TNFα) blocks RAF inhibitor–induced apoptosis via activation of NF-κB. Several NF-κB-dependent factors are upregulated following TNFα and RAF inhibitor treatment. Of these factors, we show that death receptor inhibitor cellular caspase 8 (FLICE)-like inhibitory protein (c-FLIP) is required for TNFα-induced protection against RAF inhibitor. Overexpression of c-FLIP_S or c-FLIP_L isoform decreased RAF inhibitor–induced apoptosis in the absence of TNFα. Importantly, targeting NF-κB enhances response to RAF inhibitor in vitro and in vivo. Together, our results show mechanistic evidence for cytokine-mediated resistance to RAF inhibitor and provide a preclinical rationale for the strategy of cotargeting the RAF/MEK/ERK1/2 pathway and the TNFα/NF-κB axis to treat mutant BRAF melanomas

    Co-targeting HGF/cMET Signaling with MEK Inhibitors in Metastatic Uveal Melanoma.

    Get PDF
    Patients with metastatic uveal melanoma usually die within 1 year of diagnosis, emphasizing an urgent need to develop new treatment strategies. The liver is the most common site of metastasis. Mitogen-activated protein kinase kinase (MEK) inhibitors improve survival in V600 BRAF-mutated cutaneous melanoma patients but have limited efficacy in patients with uveal melanoma. Our previous work showed that hepatocyte growth factor (HGF) signaling elicits resistance to MEK inhibitors in metastatic uveal melanoma. In this study, we demonstrate that expression of two BH3-only family proteins, Bim-EL and Bmf, contributes to HGF-mediated resistance to MEK inhibitors. Targeting HGF/cMET signaling with LY2875358, a neutralizing and internalizing anti-cMET bivalent antibody, and LY2801653, a dual cMET/RON inhibitor, overcomes resistance to trametinib provided by exogenous HGF and by conditioned medium from primary hepatic stellate cells. We further determined that activation of PI3Kα/γ/δ isoforms mediates the resistance to MEK inhibitors by HGF. Combination of LY2801653 with trametinib decreases AKT phosphorylation and promotes proapoptotic PARP cleavage in metastatic uveal melanoma explants. Together, our data support the notion that selectively blocking cMET signaling or PI3K isoforms in metastatic uveal melanoma may break the intrinsic resistance to MEK inhibitors provided by factors from stromal cells in the liver

    Integrin and cytoskeletal regulation of growth factor signaling to the MAP kinase pathway

    Get PDF
    Integrin-mediated anchorage of NIH3T3 fibroblasts to the extracellular matrix component fibronectin permits efficient growth factor signaling to the p42 and p44 forms of mitogen-activated protein kinase (MAPK). Since integrins bridge the extracellular matrix to focal adhesion sites and to the actin cytoskeleton, we analyzed the role of these integrin-associated structures in efficient growth factor activation of p42 and p44-MAPKs. Use of specific reagents that disrupt actin stress fiber and focal adhesion formation demonstrated that upon readhesion of NIH3T3 cells to fibronectin, cells that were poorly spread and lacked prominent focal adhesions but that formed cortical actin structures, efficiently signaled to p42 and p44-MAPKs upon EGF stimulation. In contrast, failure to form the cortical actin structures, despite attachment to fibronectin, precluded effective EGF signaling to p42 and p44-MAPKs. Actin cytoskeletal changes induced by expression of dominant-negative and constitutively active forms of Rho GTPases did not alter EGF activation of MAPK in adherent cells. However, active Cdc42, but not active Rac1 or RhoA, partially rescued EGF signaling to p44-MAPK in cells maintained in suspension. These data indicate that a limited degree of adhesion-mediated cytoskeletal organization and focal adhesion complex formation are required for efficient EGF activation of p42 and p44-MAPKs. Our studies exclude a major role for the GTPases RhoA and Rac1 in the formation of cytoskeletal structures relevant for signaling, but indicate that structures regulated by Cdc42 enhance the ability of suspension cells to activate MAPK in response to growth factors

    Regulation of nucleocytoplasmic trafficking by cell adhesion receptors and the cytoskeleton: Figure 1.

    Get PDF
    It has become widely accepted that adhesion receptors can either directly activate, or significantly modulate, many of the signaling cascades initiated by circulating growth factors. An interesting recent development is the realization that adhesion receptors and their cytoskeletal partners can regulate the trafficking of signaling proteins between the cytoplasm and nucleus. Cell adhesion molecule control of nucleocytoplasmic trafficking allows adhesion to influence many cell decisions, and highlights the diversity of nuclear import and export mechanisms

    Low volumes of quartz cement in deeply buried Fulmar Formation sandstones explained by a low effective stress burial history

    Get PDF
    Upper Jurassic Fulmar Formation sandstones from the Fulmar Field in the Central North Sea are buried to 3.2 km and 128 °C but contain only 3.7 ± 1.7% (1σ) quartz cement, substantially less than volumes predicted by models based on temperature-related quartz precipitation kinetics. Oxygen isotope microanalysis of quartz overgrowths suggests that only limited cementation occurred at temperatures above 110 °C. We suggest that the anomalously low volumes of quartz cement are most readily explained by the effective stress history of the Fulmar Formation. Regional pore pressure analysis strongly suggests that pore fluid pressures in the Fulmar Formation decreased substantially in the last <0.5 Ma as a result of lateral seal failure, increasing effective stress from ca. 10 MPa to the current 31 MPa. A recent increase in effective stress is supported by the common occurrence of grains that are both fractured and unhealed by quartz cement. Intergranular pressure dissolution can account for around one third of the observed quartz cement, with the remainder from deep burial feldspar dissolution. We argue that the continuous history of low effective stress, until the very recent geological past, limited the rate of silica supply by intergranular pressure dissolution, and thus the rate of quartz cementation. Effective stress histories should be incorporated into predictive models of quartz cementation of sandstones
    • …
    corecore