542 research outputs found

    Half-integer contributions to the quantum Hall conductivity from single Dirac cones

    Full text link
    While the quantum Hall effect in graphene has been regarded as a realization of the anomaly associated with the massless Dirac particle carrying half the usual topological integer, this is hidden due to the doubling of the Dirac cones. In order to confirm the half-integer contribution from each Dirac cone, here we theoretically consider a lattice model in which the relative energy between the two Dirac points is systematically shifted. With an explicit calculation of the topological (Chern) number, we have demonstrated that each Dirac cone does indeed contribute to the Hall conductivity as the half odd integer series (... -3/2, -1/2, 1/2, 3/2, ...) when the Fermi energy traverses the (shifted sets of) Landau levels. The picture is also endorsed, via the bulk-edge correspondence, from the edge mode spectrum for the present model.Comment: 4 pages, 4 figure

    Cyclotron radiation and emission in graphene

    Get PDF
    Peculiarity in the cyclotron radiation and emission in graphene is theoretically examined in terms of the optical conductivity and relaxation rates to propose that graphene in magnetic fields can be a candidate to realize the Landau level laser, proposed decades ago [H. Aoki, Appl. Phys. Lett. {\bf 48}, 559 (1986)].Comment: 4 pages, 3 figure
    • …
    corecore