163 research outputs found

    Simulating Adaptive Human Bipedal Locomotion Based on Phase Resetting Using Foot-Contact Information

    Get PDF
    Humans generate bipedal walking by cooperatively manipulating their complicated and redundant musculoskeletal systems to produce adaptive behaviors in diverse environments. To elucidate the mechanisms that generate adaptive human bipedal locomotion, we conduct numerical simulations based on a musculoskeletal model and a locomotor controller constructed from anatomical and physiological findings. In particular, we focus on the adaptive mechanism using phase resetting based on the foot-contact information that modulates the walking behavior. For that purpose, we first reconstruct walking behavior from the measured kinematic data. Next, we examine the roles of phase resetting on the generation of stable locomotion by disturbing the walking model. Our results indicate that phase resetting increases the robustness of the walking behavior against perturbations, suggesting that this mechanism contributes to the generation of adaptive human bipedal locomotion

    VPP control cannot stabilize the posture during walking for high VPP location

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P7

    Fractal mechanism of basin of attraction in passive dynamic walking

    Get PDF
    Passive dynamic walking is a model that walks down a shallow slope without any control or input. This model has been widely used to investigate how humans walk with low energy consumption and provides design principles for energy-efficient biped robots. However, the basin of attraction is very small and thin and has a fractal-like complicated shape, which makes producing stable walking difficult. In our previous study, we used the simplest walking model and investigated the fractal-like basin of attraction based on dynamical systems theory by focusing on the hybrid dynamics of the model composed of the continuous dynamics with saddle hyperbolicity and the discontinuous dynamics caused by the impact upon foot contact. We clarified that the fractal-like basin of attraction is generated through iterative stretching and bending deformations of the domain of the Poincaré map by sequential inverse images. However, whether the fractal-like basin of attraction is actually fractal, i.e., whether infinitely many self-similar patterns are embedded in the basin of attraction, is dependent on the slope angle, and the mechanism remains unclear. In the present study, we improved our previous analysis in order to clarify this mechanism. In particular, we newly focused on the range of the Poincaré map and specified the regions that are stretched and bent by the sequential inverse images of the Poincaré map. Through the analysis of the specified regions, we clarified the conditions and mechanism required for the basin of attraction to be fractal

    Maneuverable and Efficient Locomotion of a Myriapod Robot with Variable Body-Axis Flexibility via Instability and Bifurcation

    Get PDF
    Aoi Shinya, Yabuuchi Yuki, Morozumi Daiki, et al. Maneuverable and Efficient Locomotion of a Myriapod Robot with Variable Body-Axis Flexibility via Instability and Bifurcation. Soft Robotics 6, NT64 (2023); https://doi.org/10.1089/soro.2022.0177

    Effects of Murphy number on quadrupedal running gait based on a simple model

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P4

    Sudden change in fractality of basin boundary in passive dynamic walking

    Full text link
    The 11th International Symposium on Adaptive Motion of Animals and Machines. Kobe University, Japan. 2023-06-06/09. Adaptive Motion of Animals and Machines Organizing Committee.Poster Session P7

    Sharp changes in fractal basin of attraction in passive dynamic walking

    Get PDF
    The version of record of this article, first published in Nonlinear Dynamics, is available online at Publisher’s website: https://doi.org/10.1007/s11071-023-08913-wA passive dynamic walker is a mechanical system that walks down a slope without any control, and gives useful insights into the dynamic mechanism of stable walking. This system shows specific attractor characteristics depending on the slope angle due to nonlinear dynamics, such as period-doubling to chaos and its disappearance by a boundary crisis. However, it remains unclear what happens to the basin of attraction. In our previous studies, we showed that a fractal basin of attraction is generated using a simple model over a critical slope angle by iteratively applying the inverse image of the Poincaré map, which has stretching and bending effects. In the present study, we show that the size and fractality of the basin of attraction sharply change many times by changing the slope angle. Furthermore, we improved our previous analysis to clarify the mechanisms for these changes and the disappearance of the basin of attraction based on the stretching and bending deformation in the basin formation process. These findings will improve our understanding of the governing dynamics to generate the basin of attraction in walking

    A study on ensuring the quality and safety of pharmaceuticals and medical devices derived from processing of autologous human induced pluripotent stem(-like) cells

    Get PDF
    As a series of endeavors to establish suitable measures for the sound development of regenerative medicine using human stem cell-based products, we studied scientific principles, concepts, and basic technical elements to ensure the quality and safety of therapeutic products derived from autologous human iPS cells or iPS cell-like cells, taking into consideration scientific and technological advances, ethics, regulatory rationale, and international trends in human stem cell-derived products. This led to the development of the Japanese official Notification No. 0907-4, “Guideline on Ensuring the Quality and Safety of Pharmaceuticals and Medical Devices Derived from the Processing of Autologous Human Induced Pluripotent Stem(-Like) Cells, ” issued by Pharmaceuticals and Food Safety Bureau, Ministry of Health, Labour and Welfare of Japan, on September 7, 2012. The present paper addresses various aspects of products derived from autologous human iPS cells (or iPS cell-like cells), in addition to similar points to consider that are described previously for autologous human stem cell-based products. Major additional points include (1) possible existence of autologous human iPS cell-like cells that are different from iPS cells in terms of specific biological features; (2) the use of autologous human iPS(-like) cells as appropriate starting materials for regenerative medicine, where necessary and significant; (3) establishment of autologous human iPS(-like) cell lines and their characterization; (4) cell banking and/or possible establishment of intermediate cell lines derived from autologous human iPS(-like) cells at appropriate stage(s) of a manufacturing process, if necessary; and (5) concerns about the presence of undifferentiated cells in the final product; such cells may cause ectopic tissue formation and/or tumorigenesis. The ultimate goal of this guidance is to provide suitable medical opportunities as soon as possible to the patients with severe diseases that are difficult to treat with conventional modalities
    corecore