31 research outputs found

    Cosmoglobe: Towards end-to-end CMB cosmological parameter estimation without likelihood approximations

    Full text link
    We implement support for a cosmological parameter estimation algorithm as proposed by Racine et al. (2016) in Commander, and quantify its computational efficiency and cost. For a semi-realistic simulation similar to Planck LFI 70 GHz, we find that the computational cost of producing one single sample is about 60 CPU-hours and that the typical Markov chain correlation length is \sim100 samples. The net effective cost per independent sample is \sim6 000 CPU-hours, in comparison with all low-level processing costs of 812 CPU-hours for Planck LFI and WMAP in Cosmoglobe Data Release 1. Thus, although technically possible to run already in its current state, future work should aim to reduce the effective cost per independent sample by at least one order of magnitude to avoid excessive runtimes, for instance through multi-grid preconditioners and/or derivative-based Markov chain sampling schemes. This work demonstrates the computational feasibility of true Bayesian cosmological parameter estimation with end-to-end error propagation for high-precision CMB experiments without likelihood approximations, but it also highlights the need for additional optimizations before it is ready for full production-level analysis.Comment: 10 pages, 8 figures. Submitted to A&

    Genome Editing in Fruit Tree Crops

    No full text

    Genome Editing in Oilseed Crops

    No full text

    Centromeric histone H3 protein: from basic study to plant breeding applications

    Full text link

    <span style="font-size:11.0pt;font-family: "Times New Roman";mso-fareast-font-family:"Times New Roman";mso-bidi-font-family: Mangal;mso-ansi-language:EN-GB;mso-fareast-language:EN-US;mso-bidi-language: HI" lang="EN-GB">Assessment of <i style="mso-bidi-font-style:normal">Arabidopsis thaliana <span style="mso-bidi-font-style:italic">CENH3</span></i> promoter in <i style="mso-bidi-font-style:normal">Brassica juncea</i> for development of haploid inducer lines</span>

    No full text
    425-430<span style="font-size:11.0pt;font-family: " times="" new="" roman";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" mangal;mso-ansi-language:en-gb;mso-fareast-language:en-us;mso-bidi-language:="" hi;mso-bidi-font-weight:bold"="" lang="EN-GB">Centromeres are epigenetically specified by the centromeric histone H3 protein (CENH3). The timing and level of expression of CENH3 is tightly regulated to match the demands of the host cell. So far in plants, only CENH3 promoter of Arabidopsis thaliana (L.) Heynh. has been characterized. However, whether CENH3 promoters retain their characteristic mode of regulation in other species remains to be established. In the present study, activity of AtCENH3 promoter was investigated using reporter gene assay in <i style="mso-bidi-font-style: normal">Brassica juncea (L.) Czern. A 1156 bp promoter fragment of AtCENH3 gene (<i style="mso-bidi-font-style: normal">At1g01370) including the first 111 nucleotides of the coding sequence was amplified and cloned into the pORE-R2 binary vector to ensure translation fusion with the uidA coding sequences. The Agrobacterium tumefaciens strain GV3101 harbouring the recombinant construct was used to transform B. juncea cv. RLM198 hypocotyl explants. Histochemical assay of T0 and T1 transgenics showed GUS expression in shoot apical meristem, leaf, sepal, flower pedicel and root tip. Intense GUS expression was observed in meristematic tissues, particularly at shoot and root apices. However, mature leaves, flowers, pollen and ovules exhibited very low or no GUS expression. Our results showed that AtCENH3 promoter regulates cognate gene expression in Brassica juncea as it does in A. thaliana, and hence a suitable candidate for developing haploid inducer line in <i style="mso-bidi-font-style: normal">B. juncea. </span

    Cloning, characterization and expression analysis of <em>APETALA2</em> genes of <em>Brassica juncea</em> (L.) Czern.

    No full text
    604-610The APETALA2/Ethylene-Responsive Factor (AP2/ERF) is one of the largest gene families encoding several plant specific transcription factors. It plays significant roles in growth and development process, biotic and abiotic stresses, and responses to hormones. AP2 is a homeotic gene governing floral meristem specification, floral organ determination and floral homeotic gene expression in Arabidopsis. The basic structure of AP2 gene was unchanged during evolution in diploid species. The present study was undertaken to find whether AP2 has undergone any change in structure or expression pattern during evolution of allopolyploid Brassica juncea. We cloned AP2 orthologs and c-DNAs from B. juncea and B. nigra. B. juncea was found to carry three AtAP2 orthologs. Comparison of BjAP2 genes with AP2 orthologs from progenitor species, B. rapa and B. nigra showed that two of the BjAP2 genes were derived from B. rapa and one from B. nigra. BjAP2 genes have retained its characteristic AP2 domain and miR172 complementary sequences. mRNAs originated from three AP2 orthologs were detected in all the tissues examined, namely, leaf, flower buds and seedling, indicating absence of sub-functionalization of AP2 during polyploid evolution. However, one of the B. rapa copies gave alternatively spliced AP2 transcript which lacked the second exon. Consequently, the splice variant could not be translated into functional AP2 protein. Considering that miR172 suppresses translation of AP2 transcripts, the alternatively spliced transcript could still play important regulatory role by limiting the availability of miR172 molecules to bind to functional AP2 transcripts. qRT-PCR analysis of BjAP2 expression in different accessions of B. juncea with contrasting seed size indicated that BjAP2 is not a major determinant of seed size in mustard

    Magnetopriming Actuates Nitric Oxide Synthesis to Regulate Phytohormones for Improving Germination of Soybean Seeds under Salt Stress

    No full text
    In this study, the role of the signalling molecule nitric oxide (NO) in magnetopriming-mediated induction of salinity tolerance in soybean seeds is established. The cross-talk of NO with germination-related hormones gibberellic acid (GA), abscisic acid (ABA) and auxin (IAA) for their ability to reduce the Na+/K+ ratio in the seeds germinating under salinity is highlighted. Salt tolerance index was significantly high for seedlings emerging from magnetoprimed seeds and sodium nitroprusside (SNP, NO-donor) treatment. The NO and superoxide (O2&bull;&minus;) levels were also increased in both of these treatments under non-saline and saline conditions. NO generation through nitrate reductase (NR) and nitric oxide synthase-like (NOS-like) pathways indicated the major contribution of NO from the NR-catalysed reaction. The relative expression of genes involved in the NO biosynthetic pathways reiterated the indulgence of NR in NO in magnetoprimed seeds, as a 3.86-fold increase in expression was observed over unprimed seeds under salinity. A 23.26-fold increase in relative expression of NR genes by the NO donor (SNP) was observed under salinity, while the NR inhibitor (sodium tungstate, ST) caused maximum reduction in expression of NR genes as compared to other inhibitors [L-NAME (N(G)-nitro-L-arginine methyl ester; inhibitor of nitric oxide synthase-like enzyme) and DPI (diphenylene iodonium; NADPH oxidase inhibitor)]. The ratio of ABA/GA and IAA/GA decreased in magnetoprimed and NO donor-treated seeds, suggesting homeostasis amongst hormones during germination under salinity. The magnetoprimed seeds showed low Na+/K+ ratio in all treatments irrespective of NO inhibitors. Altogether, our results indicate that a balance of ABA, GA and IAA is maintained by the signalling molecule NO in magnetoprimed seeds which lowers the Na+/K+ ratio to offset the adverse effects of salinity in soybean seeds
    corecore