32 research outputs found

    Effectiveness of mediation in the resolution of environmental complaints against the activities of gold mining industries in the Witwatersrand region

    Get PDF
    In the Witwatersrand gold mining area, there have been recurring public complaints about dust dispersed from gold tailings storage facilities (TSFs) that traverse the landscape. Although weather aggravates the frequency and intensity of dust emission from TSFs in the study area, the rapid conversion of buffer areas around the dumps to residential land–use is exposing more people to dust hazards. This study assessed the effectiveness of Crown Mines Dust Monitoring forum in Johannesburg as an alternative environmental dispute resolution mechanism. Records of complaints from 1995 to 2010 that were made available through the forum were collated and analysed with the aid of descriptive statistics. Within the study period, complaints about mine pollution were more frequent between August and October, i.e. the dry months. More than 70% of the complaints were made by companies whose properties, operations and employees were affected by dust emission from the TSFs. While 52% of the complainants reported pollution problems for the first time within the study period, other cases were follow-up to previous complaints. Mining companies responded to 31% of the public’s grievances about dust pollution from their facilities within one week and another 12% in two weeks; response to the remaining complaints took much longer time. As part of mines’ response to public complaints, site visits were organised to indicted facilities, and pollution control measures and mitigation plan adopted at sites were also explained. Moreover, additional control measures were installed in critical circumstances to ameliorate dust pollution. Only a few of the complaints reported to the forum escalated to litigation or issuance of penalty by government agency. Although, the forum provided an avenue for resolution of environmental conflicts in a pragmatic and mutually beneficial manner, the right of the public to a clean environment is still not being realised fully

    Assessing emissions levels and costs associated with climate and air pollution policies in South Africa

    Get PDF
    Affordable energy supply and reductions in emissions of local air pollution and greenhouse gases are each important aspects of South Africa's goals. Many traditional solutions, however, work in contradiction to one another. This work investigates effects on estimated emissions and costs of mitigation strategies using the Greenhouse Gas and Air Pollution Interaction Synergies (GAINS) model to identify policies that satisfy multiple goals. Eight scenarios that describe air pollution control options and mixes of energy production technologies are implemented in GAINS, which quantifies country-wide air pollution and greenhouse emissions and costs of controls. Emissions and costs trajectories are compared to the business as usual case, which projects CO2 emissions to increase by 60% by 2050 compared to 2015. Results show that replacing all coal generation with renewables reduces CO2 emissions in 2050 by 8% compared to 2015, and that aggressive policy targeting the whole energy sector reduces CO2 emissions in 2050 by 40%. GAINS is used to show co-benefits and tradeoffs of each scenario, such as reductions in emissions control costs that accompany a switch to renewables. The approach provides supporting evidence for policies that exploit co-benefits and avoid contradictions by assessing multiple aspects of the energy sector within the integrated framework provided by the GAINS modeling platform

    Optimising the imbaula stove

    Get PDF
    In South Africa, human and environmental health implications from domestic solid fuel combustion have spurred interest in cleaner alternative sources of energy and better combustion technologies. Field research among wood and coal burning informal settlements in Johannesburg has shown that the most prevalent mode of combustion is self-made imbaula (brazier) stoves, manufactured from discarded 20 L steel drums. Such stoves are made without any measure of performance optimisation, leading to fuel inefficiency and high emissions - previous field surveys have indicated that the number, size and placement of primary and secondary air inlets (taken as holes below and above the fire grate respectively) vary over a wide range, starting from an extreme with no holes below the grate [1]. Researchers at SeTAR Centre, University of Johannesburg, have set out to develop an enhanced imbaula, by investigating performance in terms of size and distribution of primary and secondary air inlets, and height of grate level. The test imbaulas are constructed out of standard 20 L drums with a height of 360 mm and diameter of 295 mm. A range of hole configurations has been designed, from which selected test configurations are fabricated for experimental evaluation of thermal and emissions properties, using the SeTAR heterogeneous testing protocol. The results indicate that higher hole densities (above and below the grate) lead to higher power outputs and lower specific CO emissions, but with lower thermal efficiency. Further, results indicate that adequate air holes below the grate (primary air) are more important for proper combustion in an imbaula; however this should be synchronised with secondary air in-lets (above the grid) in order to have congruence of all the performance criteria. This study should lead to the development of a set of criteria that can further enhance emissions reductions and fuel efficiency obtained by top-down stove ignition methods (Basa njengo Magogo) for imbaula type stoves

    Atmospheric dry and wet deposition of sulphur and nitrogen species and assessment of critical loads of acidic deposition exceedance in South Africa

    Get PDF
    We tested the hypothesis that acidic atmospheric pollution deposition, originating from the South African central industrial area, poses an environmental threat across a larger region within the dispersal footprint. A network of 37 passive monitoring sites to measure SO2 and NO2 was operated from August 2005 to September 2007. The area extended over the entire northern and eastern interior of South Africa. Monitoring locations were chosen to avoid direct impacts from local sources such as towns, mines and highways. Dry deposition rates of SO2 and NO2 were calculated from the measured concentrations. Concentrations of sulphur and nitrogen species in wet deposition from a previous study were used in conjunction with measured rainfall for the years 2006 and 2007 to estimate the wet deposition over the region. The calculated total (non-organic) acidic deposition formed the basis for an assessment of exceedance of critical loads based on sensitivity of the regional soils. Regional soil sensitivity was determined by combining two major soil attributes available in the World Inventory of Soil Emission Potentials (International Soil Reference and Information Centre). Results indicate that certain parts of the central pollution source area on the South African Highveld have the potential for critical load exceedance, while limited areas downwind show lower levels of exceedance. Areas upwind and remote areas up and downwind, including forested areas of the Drakensberg escarpment, do not show any exceedance of the critical loads

    Influence of coal-particle size on emissions using the top-lit updraft ignition method

    Get PDF
    Despite the Government’s intervention of an intensive electrification program in South Africa, which has resulted in more than 87% of households being connected to the grid, a majority of low-income households still depend on solid fuel (coal and wood) as a primary source of energy, especially on the central Highveld. In informal settlements, combustion of coal is done in inefficient self-fabricated braziers, colloquially known as imbaulas. Emissions from domestic coal combustion result in elevated household and ambient air pollution levels that often exceed national air quality limits. Continued dependence on coal combustion exposes households to copious amounts of health-damaging pollutants. Despite the health significance of coal-burning emissions from informal braziers, there is still a dearth of emissions data from these devices. Consequently, evaluating the emission characteristics of these devices and to determine the resultant emission factors is needed. The effects of ignition methods and ventilation rates on particulate and gaseous emission from coal-burning braziers are reported in literature. However, to date there are no studies carried out to investigate the influence of the size of coal pieces on brazier emission performance. In this paper, we report on controlled combustion experiments carried out to investigate systematically, influences of coal particle size on gaseous and condensed matter (smoke) emissions from informal residential coal combustion braziers. Results presented are averages of three identical burn-cycles of duration three hours or fuel burn-out, whichever was the soonest

    Comparisons of Meso-Scale Air Pollution Dispersion Modelling of S02, N02 and 03 Using Regional-Scale Monitoring Results

    Get PDF
    Results of a regional-scale monitoring campaign were compared with two meso-scale to sub-continental modelling studies, for S02 and N02 and 03 respectively (Fourie, 2006, Zunckel et al., 2006, van Tienhoven et al., 2006, Van Tienhoven and Zunckel, 2004). However, a direct validation of the monitored results with modelled results could not be carried out, as available modelling studies dealt with different periods from the monitoring study. For this study, three monitoring sites were selected for comparison with modelling results. These sites were strategically selected to be representative of the entire region. Site Elandsfontein in the centre of the industrial Highveld, site Amersfoort, downwind from the central pollution source region and site Louis Trichardt, a remote site. Sulphur, nitrogen and ozone species comparisons were considered in turn. The comparisons were carried out for equivalent annual (and seasonal) cycles. The compa risons produced mixed results. For sulphur and nitrogen species in most cases, depending on site and season, modelling results ranged between significant underestimates to overestimates. Ozone modelling almost always overestimated the concentrations compared to the measured results. Despite several limiting factors, constraining the reliability of the comparisons between the modelled and measured results, they were important as the distribution of the gases showed patterns that imply understanding of the source and fate of these pollutants. The uncertainty in the magnitude of the model inaccuracies as well as margin of error of the measured data remained. Thus a modelling validation is recommended using the concurrent period with fewer uncertainties

    SOURCE APPORTIONMENT AND THE UNITED STATES CLEAN AIR ACT

    No full text

    LUNG DEPOSITION OF AEROSOLS FROM INDUSTRIAL ENVIRONMENTS

    No full text
    corecore