1 research outputs found

    Geology of metamorphic rocks deriving from paleohydrothermal systems in the Mesoproterozoic Serra do Itaberaba Group, São Paulo State, southeastern Brazil

    No full text
    <p>In the central portion of the Ribeira fold belt, southeastern Brazil, the Mesoproterozoic volcanosedimentary Serra do Itaberaba Group was deposited in an ocean basin having normal mid-ocean ridge basalt type basalts that evolved to a back-arc environment. This succession was affected by two medium-grade regional metamorphic events and a third low-grade retrometamorphic event. This geological map covers an area of approximately 16 km<sup>2</sup>, between 23°16′41.824″ and 23°18′47.744″ latitudes S, and 46°20′57.056″ and 46°23′18.933″ longitudes W, as a scale of 1:5000. It encompasses the metamorphic products of tectonically deformed paleohydrothermal systems that developed in a back-arc environment, which are spatially and genetically linked to small metamorphosed andesitic-rhyolitic bodies. These systems were responsible for lixiviation of Ca and alkali in deeper parts, carbonatization in shallower parts, and a first large chloritic alteration zone (CZ1) that was crosscut by small chloritic (CZ2), silicification, and advanced argillic alteration zones. The metamorphic products of CZ1 are cummingtonite/anthophyllite rocks, whereas those related to CZ2 are Mg-rich chloritites. The metamorphic products of silicification and advanced argillic alteration zones are rocks composed of quartz ± specularite and of corundum, margarite, sericite, tourmaline, rutile, and Ca-plagioclase, respectively. Those associated with Ca and alkali depletions are garnet-hornblende amphibolites, whereas those related to carbonatization zones are composed of diopside, hornblende, tremolite/actinolite, carbonate, clinozoisite/epidote, plagioclase, and quartz. Cummingtonite/anthopyllite rocks and Mg-rich chloritites are similar to those associated with metamorphosed Kuroko-type volcanogenic massive sulfide deposits, whereas rocks composed of corundum, margarite, sericite, tourmaline, rutile, and Ca-plagioclase are genetically associated with oceanic high-sulfidation magmatic-hydrothermal gold mineralization.</p
    corecore