6 research outputs found
Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy
Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells
Tribological Properties of AlSi12-Al2O3 Interpenetrating Composite Layers in Comparison with Unreinforced Matrix Alloy
Alumina–Aluminum composites with interpenetrating network structures are a new class of advanced materials with potentially better properties than composites reinforced by particles or fibers. Local casting reinforcement was proposed to take into account problems with the machinability of this type of materials and the shaping of the finished products. The centrifugal infiltration process fabricated composite castings in the form of locally reinforced shafts. The main objective of the research presented in this work was to compare the tribological properties (friction coefficient, wear resistance) of AlSi12/Al2O3 interpenetrating composite layers with unreinforced AlSi12 matrix areas. Profilometric tests enabled both quantitative and qualitative analyses of the wear trace that formed on investigated surfaces. It has been shown that interpenetrating composite layers are characterized by lower and more stable coefficients of friction (μ), as well as higher wear resistance than unreinforced matrix areas. At the present stage, the study confirmed that the tribological properties of the composite layers depend on the spatial structure of the ceramic reinforcement, and primarily the volume and size of alumina foam cells
Tribological Properties of Single (AlSi7/SiCp, AlSi7/GCsf) and Hybrid (AlSi7/SiCp + GCsf) Composite Layers Formed in Sleeves via Centrifugal Casting
When designing the composition and structure of a composite material intended for tribological cooperation, many external and structural factors must be considered. The aim of this research was to compare the tribological properties (wear resistance and friction coefficient) of AlSi7Mg1Sr0.03/SiCp and AlSi7Mg1Sr0.03/GCsf single-reinforced composite layers with AlSi7Mg1Sr0.03/SiCp + GCsf hybrid composite layer formed in sleeves via vertical centrifugal casting. Profilometry enabled quantitative and qualitative analyses to be performed on the wear traces formed on investigated surfaces. The results show that a hybrid composite layer containing spherical glassy carbon particles had a significantly lower and more stable coefficient of friction (μ) and a higher wear resistance compared with single composite layers. The obtained effect was related to the mechanism of vitreous carbon consumption, which was crushed during operation, and then introduced between the cooperating friction surfaces. In this way, it acted as a solid lubricant, which stabilized the coefficient of friction and reduced the wear process
Assessment of the Tribological Properties of Aluminum Matrix Composites Intended for Cooperation with Piston Rings in Combustion Engines
Tribological interactions between the piston groove and ring in combustion engines have a significant influence on mechanical friction losses. Based on the analysis of the distribution of forces acting on the piston, the conditions for the friction tests were selected. The research was carried out on composites reinforced with silicon carbide (SiCp), glassy carbon (GCp), and a hybrid mixture of particles (SiCp + GCp). Tribological tests were carried out under extremely unfavorable dry sliding conditions using a pin-on-block tester. The friction of coefficient and wear values of the matrix alloy, composites, and iron were compared. Profilometry was used to perform quantitative and qualitative analyses of the wear tracks formed on the tested surfaces. The effect of the presence of reinforcing particles on the geometry of working surfaces was also evaluated. The obtained results show that AlSi12CuNiMg/SiCp and AlSi12CuNiMg/SiCp + GCp composites provided satisfactory effects towards stabilizing the friction coefficient and reducing the wear of tested tribological couples. This may provide a new solution dedicated to an important system, which is the piston groove/piston ring in diesel engines