2 research outputs found

    PERMANENT: Publicly Verifiable Remote Attestation for Internet of Things through Blockchain

    No full text
    Remote Attestation (RA) is a security mechanism that allows a centralized trusted entity (Verifier) to check the trustworthiness of a potentially compromised IoT device (Prover). With the tsunami of interconnected IoT devices, the advancement of swarm RA schemes that efficiently attest large IoT networks has become crucial. Recent swarm RA approaches work towards distributing the attestation verification from a centralized Verifier to many Verifiers. However, the assumption of trusted Verifiers in the swarm is not practical in large networks. In addition, the state-of-the-art RA schemes do not establish network-wide decentralized trust among the interacting devices in the swarm. This paper proposes PERMANENT, a Publicly Verifiable Remote Attestation protocol for Internet of Things through Blockchain, which stores the historical attestation results of all devices in a blockchain and allows each interacting device to obtain the attestation result. PERMANENT enables devices to make a trust decision based on the historical attestation results. This feature allows the interaction among trustworthy devices (or with a trust score over a certain threshold) without the computational overhead of attesting every participating device before each interaction. We validate PERMANENT with a proof-of-concept implementation, using Hyperledger Sawtooth as the underlying blockchain. The conducted experiments confirm the feasibility of the PERMANENT protocol

    State-of-the-Art Software-Based Remote Attestation: Opportunities and Open Issues for Internet of Things

    No full text
    The Internet of Things (IoT) ecosystem comprises billions of heterogeneous Internetconnected devices which are revolutionizing many domains, such as healthcare, transportation, smart cities, to mention only a few. Along with the unprecedented new opportunities, the IoT revolution is creating an enormous attack surface for potential sophisticated cyber attacks. In this context, Remote Attestation (RA) has gained wide interest as an important security technique to remotely detect adversarial presence and assure the legitimate state of an IoT device. While many RA approaches proposed in the literature make different assumptions regarding the architecture of IoT devices and adversary capabilities, most typical RA schemes rely on minimal Root of Trust by leveraging hardware that guarantees code and memory isolation. However, the presence of a specialized hardware is not always a realistic assumption, for instance, in the context of legacy IoT devices and resource-constrained IoT devices. In this paper, we survey and analyze existing softwarebased RA schemes (i.e., RA schemes not relying on specialized hardware components) through the lens of IoT. In particular, we provide a comprehensive overview of their design characteristics and security capabilities, analyzing their advantages and disadvantages. Finally, we discuss the opportunities that these RA schemes bring in attesting legacy and resource-constrained IoT devices, along with open research issues
    corecore