21 research outputs found
The Case for a Muon Collider Higgs Factory
We propose the construction of a compact Muon Collider Higgs Factory. Such a
machine can produce up to \sim 14,000 at 8\times 10^{31} cm^-2 sec^-1 clean
Higgs events per year, enabling the most precise possible measurement of the
mass, width and Higgs-Yukawa coupling constants.Comment: Supporting letter for the document: "Muon Collider Higgs Factory for
Smowmass 2013", A White Paper submitted to the 2013 U.S. Community Summer
Study of the Division of Particles and Fields of the American Physical
Society, Y. Alexahin, et. al, FERMILAB-CONF-13-245-T (July, 2013
Status of Muon Collider Research and Development and Future Plans
The status of the research on muon colliders is discussed and plans are
outlined for future theoretical and experimental studies. Besides continued
work on the parameters of a 3-4 and 0.5 TeV center-of-mass (CoM) energy
collider, many studies are now concentrating on a machine near 0.1 TeV (CoM)
that could be a factory for the s-channel production of Higgs particles. We
discuss the research on the various components in such muon colliders, starting
from the proton accelerator needed to generate pions from a heavy-Z target and
proceeding through the phase rotation and decay ()
channel, muon cooling, acceleration, storage in a collider ring and the
collider detector. We also present theoretical and experimental R & D plans for
the next several years that should lead to a better understanding of the design
and feasibility issues for all of the components. This report is an update of
the progress on the R & D since the Feasibility Study of Muon Colliders
presented at the Snowmass'96 Workshop [R. B. Palmer, A. Sessler and A.
Tollestrup, Proceedings of the 1996 DPF/DPB Summer Study on High-Energy Physics
(Stanford Linear Accelerator Center, Menlo Park, CA, 1997)].Comment: 95 pages, 75 figures. Submitted to Physical Review Special Topics,
Accelerators and Beam
Recommended from our members
A Linac afterburner to supercharge the Fermilab booster
A Linac Afterburner is proposed to raise the energy of the beam injected into the Femrilab Booster from 400 MeV to about 600 MeV, thereby alleviating the longitudinal and transverse space-charge effects at low energy that currently limit its performance. The primary motivation is to increase the integrated luminosity of the Tevatron Collider in Run II, but other future programs would also recap substantial benefits. The estimated cost is $23M