7 research outputs found

    Design and implementation of components for renewably-powered base-stations with heterogeneous access channel

    Get PDF
    Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency.Providing high-speed broadband services in remote areas can be a challenging task, especially because of the lack of network infrastructure. As typical broadband technologies are often expensive to deploy, they require large investment from the local authorities. Previous studies have shown that a viable alternative is to use wireless base stations with high-throughput point to point (PTP) backhaul links. With base stations comes the problem of powering their systems, it is tackled in this thesis by relying on renewable energy harvesting, such as solar panels or wind turbines. This thesis, in the context of the sustainable cellular network harvesting ambient energy (SCAVENGE) project, aims to contribute to a reliable and energy efficient solution to this problem, by adjusting the design of an existing multi-radio energy harvesting base station. In Western Europe, 49 channels of 8 MHz were used for analogue TV transmissions, ranging from 470 MHz (Channel 21) to 862 MHz (Channel 69); this spectrum, now partially unused due to the digital television (DTV) switch-over, has been opened to alternative uses by the regulatory authorities. Using this newly freed ultra high frequency (UHF) range, also known as TV white space (TVWS), can offer reliable low-cost broadband access to housings and businesses in low-density areas. While UHF transmitters allow long range links, the overcrowding of the TV spectrum limits the achievable throughput; to increase the capacity of such TVWS rural broadband base station the UHF radio has previously been combined with a lower-range higher throughput GHz radio like Wireless Fidelity (WiFi). From the regulatory constraints of TVWS applications arises the need for frequency agile transceivers that observe strict spectral mask requirements, this guided previous works towards discrete Fourier transform (DFT) modulated filter-bank multicarrier (FBMC) systems. These systems are numerically efficient, as they permit the up-and-down conversion of the 40 TV channels at the cost of a single channel transceiver and the modulating transform. Typical implementations rely on power-of two fast Fourier transforms (FFTs); however the smallest transform covering the full 40 channels of the TVWS spectrum is a 64 points wide, thus involving 24 unused channels. In order to attain a more numerically-efficient implemented design, we introduce the use of mixed-radix FFTs modulating transform. Testing various sizes and architectures, this approach provides up to 6.7% of energy saving compared to previous designs. Different from orthogonal frequency-division multiplexing (OFDM), FBMC systems are generally expected to be more robust to synchronisation errors, as oversampled FBMC systems can include a guard band, and even in a doubly-dispersive channel, inter-carrier interference (ICI) can be considered negligible. Even though sub-channels can be treated independently—i.e. without the use of cross-terms—they still require equalisation. We introduce a per-band equalisation, amongst different options, a robust and fast blind approach based on a concurrent constant modulus (CM)/decision directed (DD) fractionally-space equaliser (FSE) is selected. The selected approach is capable of equalising a frequency-selective channel. Furthermore the proposed architecture is advantageous in terms of power consumption and implementation cost. After focussing on the design of the radio for TVWS transmission, we address a multi-radio user assignment problem. Using various power consumption and harvesting models for the base station, we formulate two optimisation problems, the first focuses on the base station power consumption, while the second concentrates on load balancing. We employ a dynamic programming approach to optimise the user assignment. The use of such algorithms could allow a downsizing of the power supply systems (harvesters and batteries), thus reducing the cost of the base station. Furthermore the algorithms provide a better balance between the number of users assigned to each network, resulting in a higher quality of service (QoS) and energy efficiency

    Energy-efficient wideband transceiver with per-band equalisation and synchronisation

    Get PDF
    To emit in the TV white space (TVWS) spectrum, the regulator has requested very strict spectral masks, which can be fulfilled using a FFT-modulated filter-bank multi-carrier system (FBMC) to extract one or several TVWS channels in the 470--790MHz range. Such a system reduces the channel dispersion, but even with near-perfectly reconstructing filter bank, the need for equalisation and synchronisation remains. In this work, we propose a per-band equalisation and synchronisation approach, performed by a constant modulus algorithms running concurrently with a direction-directed adaptation process for faster convergence and reduced phase ambiguity. We compare symbol- and fractionally-spaced versions, and investigate their fixed-point implementation on an FPGA. We compare the performance of the different systems in terms of mean squared error, computational cost, and robustness towards noise

    Laporan praktik kerja profesi apoteker di Bidang Sumber Daya Kesehatan Seksi Kefarmasian dan Seksi Alat Kesehatan dan Perbekalan Rumah Tangga Dinas Kesehatan Provinsi Jawa Timur Jl. Jenderal Ahmad Yani No. 118, Surabaya 10 Mei 2022 - 11 Mei 2022

    No full text

    Outcomes and Their State-level Variation in Patients Undergoing Surgery With Perioperative SARS-CoV-2 Infection in the USA. A Prospective Multicenter Study

    No full text
    Objective: To report the 30-day outcomes of patients with perioperative SARS-CoV-2 infection undergoing surgery in the USA. Background: Uncertainty regarding the postoperative risks of patients with SARS-CoV-2 exists. Methods: As part of the COVIDSurg multicenter study, all patients aged ≥17 years undergoing surgery between January 1 and June 30, 2020 with perioperative SARS-CoV-2 infection in 70 hospitals across 27 states were included. The primary outcomes were 30-day mortality and pulmonary complications. Multivariable analyses (adjusting for demographics, comorbidities, and procedure characteristics) were performed to identify predictors of mortality. Results: A total of 1581 patients were included; more than half of them were males (n = 822, 52.0%) and older than 50 years (n = 835, 52.8%). Most procedures (n = 1261, 79.8%) were emergent, and laparotomies (n = 538, 34.1%). The mortality and pulmonary complication rates were 11.0 and 39.5%, respectively. Independent predictors of mortality included age ≥70 years (odds ratio 2.46, 95% confidence interval [1.65-3.69]), male sex (2.26 [1.53-3.35]), ASA grades 3-5 (3.08 [1.60-5.95]), emergent surgery (2.44 [1.31-4.54]), malignancy (2.97 [1.58-5.57]), respiratory comorbidities (2.08 [1.30-3.32]), and higher Revised Cardiac Risk Index (1.20 [1.02-1.41]). While statewide elective cancelation orders were not associated with a lower mortality, a sub-analysis showed it to be associated with lower mortality in those who underwent elective surgery (0.14 [0.03-0.61]). Conclusions: Patients with perioperative SARS-CoV-2 infection have a significantly high risk for postoperative complications, especially elderly males. Postponing elective surgery and adopting non-operative management, when reasonable, should be considered in the USA during the pandemic peaks
    corecore