29 research outputs found

    Cadherin-9 Is a Novel Cell Surface Marker for the Heterogeneous Pool of Renal Fibroblasts

    Get PDF
    BACKGROUND: Interstitial fibroblasts are a minor, but nevertheless very important, component of the kidney. They secrete and remodel extracellular matrix and they produce active compounds such as erythropoietin. However, studying human renal fibroblasts has been hampered by the lack of appropriate surface markers. METHODS AND FINDINGS: The expression of cadherin-9 in various human renal cell lines and tissues was studied on the mRNA level by RT-PCR and on the protein level with the help of newly generated cadherin-9 antibodies. The classical type II cadherin-9, so far only described in the neural system, was identified as a reliable surface marker for renal fibroblasts. Compared to FSP1, a widely-used cytosolic renal fibroblast marker, cadherin-9 showed a more restricted expression pattern in human kidney. Under pathological conditions, cadherin-9 was expressed in the stroma of renal cell carcinoma, but not in the tumor cells themselves, and in renal fibrosis the percentage of cadherin-9-positive cells was clearly elevated 3 to 5 times compared to healthy kidney tissue. Induction of epithelial mesenchymal transition in renal epithelial cells with cyclosporin-A, which causes renal fibrosis as a side effect, induced cadherin-9 expression. Functional studies following siRNA-mediated knockdown of cadherin-9 revealed that it acts in the kidney like a typical classical cadherin. It was found to be associated with catenins and to mediate homophilic but not heterophilic cell interactions. CONCLUSIONS: Cadherin-9 represents a novel and reliable cell surface marker for fibroblasts in healthy and diseased kidneys. Together with the established marker molecules FSP1, CD45 and alpha smooth muscle actin, cadherin-9 can now be used to differentiate the heterogenic pool of renal fibroblasts into resident and activated fibroblasts, immigrated bone marrow derived fibroblast precursors and cells in different stages of epithelial mesenchymal transition

    Efficient Automatic Visualisation of SystemC Designs

    No full text
    Complex designs can only be understood, if the underlying information is provided in a concise way. In this context visualization is becoming an essential part of system design, understanding and debugging. In this paper we present an approach to visualization of designs described in SystemC. For the visualization an industrial tool including many features, like e.g. schematic viewing, cross-probing between schematic view and source code view, critical path fragment navigation or object search, is used by an API. The techniques how to extract the information from SystemC are described and examples are provided

    Recursive Bi-Partitioning of Netlists for Large Number of Partitions

    No full text
    In many application in VLSI CAD, a given netlist has to be partitioned into smaller sub-designs which can be handled much better. In this paper we present a new recursive bi-partitioning algorithm that is especially applicable, if a large number of final partitions, e.g. more than 1000, has to be computed. The algorithm consists of two steps. Based on recursive splits the problem is divided in several sub-problems, but with increasing recursion depth more run time is invested. By this an initial solution is determined very fast. The core of the method is a second step, where a very powerful greedy algorithm is applied to refine the partitions. Experimental results are given that compare the new approach to the state-of-the-art tools. The experiments show that the new approach outperforms the standard techniques with respect to run time and quality. Furthermore, the memory usage is very low and is reduced in comparison to other methods by more than a factor of four. The proposed method has been integrated in a commercially available tool

    Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions

    No full text
    \u3cp\u3eIn many industrial processes, a large proportion of energy is lost in the form of heat. Thermoelectric generators can convert this waste heat into electricity by means of the Seebeck effect. However, the use of thermoelectric generators in practical applications on an industrial scale is limited in part because electrical, thermal, and mechanical bonding contacts between the semiconductor materials and the metal electrodes in current designs are not capable of withstanding thermal-mechanical stress and alloying of the metal-semiconductor interface when exposed to the high temperatures occurring in many real-world applications. Here we demonstrate a concept for thermoelectric generators that can address this issue by replacing the metallization and electrode bonding on the hot side of the device by a p-n junction between the two semiconductor materials, making the device robust against temperature induced failure. In our proof-of-principle demonstration, a p-n junction device made from nanocrystalline silicon is at least comparable in its efficiency and power output to conventional devices of the same material and fabrication process, but with the advantage of sustaining high hot side temperatures and oxidative atmosphere.\u3c/p\u3

    Efficient p-n junction-based thermoelectric generator that can operate at extreme temperature conditions

    No full text
    In many industrial processes, a large proportion of energy is lost in the form of heat. Thermoelectric generators can convert this waste heat into electricity by means of the Seebeck effect. However, the use of thermoelectric generators in practical applications on an industrial scale is limited in part because electrical, thermal, and mechanical bonding contacts between the semiconductor materials and the metal electrodes in current designs are not capable of withstanding thermal-mechanical stress and alloying of the metal-semiconductor interface when exposed to the high temperatures occurring in many real-world applications. Here we demonstrate a concept for thermoelectric generators that can address this issue by replacing the metallization and electrode bonding on the hot side of the device by a p-n junction between the two semiconductor materials, making the device robust against temperature induced failure. In our proof-of-principle demonstration, a p-n junction device made from nanocrystalline silicon is at least comparable in its efficiency and power output to conventional devices of the same material and fabrication process, but with the advantage of sustaining high hot side temperatures and oxidative atmosphere
    corecore