63 research outputs found

    The 3-d Random Field Ising Model at zero temperature

    Full text link
    We study numerically the zero temperature Random Field Ising Model on cubic lattices of various linear sizes LL in three dimensions. For each random field configuration we vary the ferromagnetic coupling strength JJ. We find that in the infinite volume limit the magnetization is discontinuous in JJ. The energy and its first JJ derivative are continuous. The approch to the thermodynamic limit is slow, behaving like L−pL^{-p} with p∼.8p \sim .8 for the gaussian distribution of the random field. We also study the bimodal distribution hi=±hh_{i} = \pm h, and we find similar results for the magnetization but with a different value of the exponent p∼.6p \sim .6 . This raises the question of the validity of universality for the random field problem.Comment: 8 pages, 3 PostScript Figure

    Complexity spectrum of some discrete dynamical systems

    Full text link
    We first study birational mappings generated by the composition of the matrix inversion and of a permutation of the entries of 3×3 3 \times 3 matrices. We introduce a semi-numerical analysis which enables to compute the Arnold complexities for all the 9!9! possible birational transformations. These complexities correspond to a spectrum of eighteen algebraic values. We then drastically generalize these results, replacing permutations of the entries by homogeneous polynomial transformations of the entries possibly depending on many parameters. Again it is shown that the associated birational, or even rational, transformations yield algebraic values for their complexities.Comment: 1 LaTex fil

    Rounding of first-order phase transitions and optimal cooperation in scale-free networks

    Full text link
    We consider the ferromagnetic large-qq state Potts model in complex evolving networks, which is equivalent to an optimal cooperation problem, in which the agents try to optimize the total sum of pair cooperation benefits and the supports of independent projects. The agents are found to be typically of two kinds: a fraction of mm (being the magnetization of the Potts model) belongs to a large cooperating cluster, whereas the others are isolated one man's projects. It is shown rigorously that the homogeneous model has a strongly first-order phase transition, which turns to second-order for random interactions (benefits), the properties of which are studied numerically on the Barab\'asi-Albert network. The distribution of finite-size transition points is characterized by a shift exponent, 1/ν~′=.26(1)1/\tilde{\nu}'=.26(1), and by a different width exponent, 1/ν′=.18(1)1/\nu'=.18(1), whereas the magnetization at the transition point scales with the size of the network, NN, as: m∼N−xm\sim N^{-x}, with x=.66(1)x=.66(1).Comment: 8 pages, 6 figure

    Scale Invariance in disordered systems: the example of the Random Field Ising Model

    Full text link
    We show by numerical simulations that the correlation function of the random field Ising model (RFIM) in the critical region in three dimensions has very strong fluctuations and that in a finite volume the correlation length is not self-averaging. This is due to the formation of a bound state in the underlying field theory. We argue that this non perturbative phenomenon is not particular to the RFIM in 3-d. It is generic for disordered systems in two dimensions and may also happen in other three dimensional disordered systems

    Symmetry, complexity and multicritical point of the two-dimensional spin glass

    Full text link
    We analyze models of spin glasses on the two-dimensional square lattice by exploiting symmetry arguments. The replicated partition functions of the Ising and related spin glasses are shown to have many remarkable symmetry properties as functions of the edge Boltzmann factors. It is shown that the applications of homogeneous and Hadamard inverses to the edge Boltzmann matrix indicate reduced complexities when the elements of the matrix satisfy certain conditions, suggesting that the system has special simplicities under such conditions. Using these duality and symmetry arguments we present a conjecture on the exact location of the multicritical point in the phase diagram.Comment: 32 pages, 6 figures; a few typos corrected. To be published in J. Phys.

    The Pauli equation in scale relativity

    Get PDF
    In standard quantum mechanics, it is not possible to directly extend the Schrodinger equation to spinors, so the Pauli equation must be derived from the Dirac equation by taking its non-relativistic limit. Hence, it predicts the existence of an intrinsic magnetic moment for the electron and gives its correct value. In the scale relativity framework, the Schrodinger, Klein-Gordon and Dirac equations have been derived from first principles as geodesics equations of a non-differentiable and continuous spacetime. Since such a generalized geometry implies the occurence of new discrete symmetry breakings, this has led us to write Dirac bi-spinors in the form of bi-quaternions (complex quaternions). In the present work, we show that, in scale relativity also, the correct Pauli equation can only be obtained from a non-relativistic limit of the relativistic geodesics equation (which, after integration, becomes the Dirac equation) and not from the non-relativistic formalism (that involves symmetry breakings in a fractal 3-space). The same degeneracy procedure, when it is applied to the bi-quaternionic 4-velocity used to derive the Dirac equation, naturally yields a Pauli-type quaternionic 3-velocity. It therefore corroborates the relevance of the scale relativity approach for the building from first principles of the quantum postulates and of the quantum tools. This also reinforces the relativistic and fundamentally quantum nature of spin, which we attribute in scale relativity to the non-differentiability of the quantum spacetime geometry (and not only of the quantum space). We conclude by performing numerical simulations of spinor geodesics, that allow one to gain a physical geometric picture of the nature of spin.Comment: 22 pages, 2 figures, accepted for publication in J. Phys. A: Math. & Ge

    Post-critical set and non existence of preserved meromorphic two-forms

    Full text link
    We present a family of birational transformations in CP2 CP_2 depending on two, or three, parameters which does not, generically, preserve meromorphic two-forms. With the introduction of the orbit of the critical set (vanishing condition of the Jacobian), also called ``post-critical set'', we get some new structures, some "non-analytic" two-form which reduce to meromorphic two-forms for particular subvarieties in the parameter space. On these subvarieties, the iterates of the critical set have a polynomial growth in the \emph{degrees of the parameters}, while one has an exponential growth out of these subspaces. The analysis of our birational transformation in CP2 CP_2 is first carried out using Diller-Favre criterion in order to find the complexity reduction of the mapping. The integrable cases are found. The identification between the complexity growth and the topological entropy is, one more time, verified. We perform plots of the post-critical set, as well as calculations of Lyapunov exponents for many orbits, confirming that generically no meromorphic two-form can be preserved for this mapping. These birational transformations in CP2 CP_2, which, generically, do not preserve any meromorphic two-form, are extremely similar to other birational transformations we previously studied, which do preserve meromorphic two-forms. We note that these two sets of birational transformations exhibit totally similar results as far as topological complexity is concerned, but drastically different results as far as a more ``probabilistic'' approach of dynamical systems is concerned (Lyapunov exponents). With these examples we see that the existence of a preserved meromorphic two-form explains most of the (numerical) discrepancy between the topological and probabilistic approach of dynamical systems.Comment: 34 pages, 7 figure

    Minimum spanning trees on random networks

    Full text link
    We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Due to this geometric universality, we are able to characterise the energy of MST using a scaling distribution (P(Ďľ)P(\epsilon)) found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(Ďľ)P(\epsilon). We discuss the relationship to invasion percolation (IP), to the directed polymer in a random media (DPRM) and the implications for the broader issue of universality in disordered systems.Comment: 4 pages, 3 figure

    Specific-Heat Exponent of Random-Field Systems via Ground-State Calculations

    Full text link
    Exact ground states of three-dimensional random field Ising magnets (RFIM) with Gaussian distribution of the disorder are calculated using graph-theoretical algorithms. Systems for different strengths h of the random fields and sizes up to N=96^3 are considered. By numerically differentiating the bond-energy with respect to h a specific-heat like quantity is obtained, which does not appear to diverge at the critical point but rather exhibits a cusp. We also consider the effect of a small uniform magnetic field, which allows us to calculate the T=0 susceptibility. From a finite-size scaling analysis, we obtain the critical exponents \nu=1.32(7), \alpha=-0.63(7), \eta=0.50(3) and find that the critical strength of the random field is h_c=2.28(1). We discuss the significance of the result that \alpha appears to be strongly negative.Comment: 9 pages, 9 figures, 1 table, revtex revised version, slightly extende
    • …
    corecore