4 research outputs found

    Enantioselective Total Synthesis of (βˆ’)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine

    No full text
    The first total synthesis of the dihydrooxepine-containing epidithiodiketopiperazine (ETP) (βˆ’)-acetylaranotin (<b>1</b>) is reported. The key steps of the synthesis include an enantioselective azomethine ylide (1,3)-dipolar cycloaddition reaction to set the absolute and relative stereochemistry, a rhodium-catalyzed cycloisomerization/chloride elimination sequence to generate the dihydrooxepine moiety, and a stereoretentive diketopiperazine sulfenylation to install the epidisulfide. This synthesis provides access to (βˆ’)-<b>1</b> in 18 steps from inexpensive, commercially available starting materials. We anticipate that the approach described herein will serve as a general strategy for the synthesis of additional members of the dihydrooxepine ETP family

    Enantioselective Total Synthesis of (βˆ’)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine

    No full text
    The first total synthesis of the dihydrooxepine-containing epidithiodiketopiperazine (ETP) (βˆ’)-acetylaranotin (<b>1</b>) is reported. The key steps of the synthesis include an enantioselective azomethine ylide (1,3)-dipolar cycloaddition reaction to set the absolute and relative stereochemistry, a rhodium-catalyzed cycloisomerization/chloride elimination sequence to generate the dihydrooxepine moiety, and a stereoretentive diketopiperazine sulfenylation to install the epidisulfide. This synthesis provides access to (βˆ’)-<b>1</b> in 18 steps from inexpensive, commercially available starting materials. We anticipate that the approach described herein will serve as a general strategy for the synthesis of additional members of the dihydrooxepine ETP family

    Enantioselective Total Synthesis of (βˆ’)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine

    No full text
    The first total synthesis of the dihydrooxepine-containing epidithiodiketopiperazine (ETP) (βˆ’)-acetylaranotin (<b>1</b>) is reported. The key steps of the synthesis include an enantioselective azomethine ylide (1,3)-dipolar cycloaddition reaction to set the absolute and relative stereochemistry, a rhodium-catalyzed cycloisomerization/chloride elimination sequence to generate the dihydrooxepine moiety, and a stereoretentive diketopiperazine sulfenylation to install the epidisulfide. This synthesis provides access to (βˆ’)-<b>1</b> in 18 steps from inexpensive, commercially available starting materials. We anticipate that the approach described herein will serve as a general strategy for the synthesis of additional members of the dihydrooxepine ETP family

    Enantioselective Total Synthesis of (βˆ’)-Acetylaranotin, a Dihydrooxepine Epidithiodiketopiperazine

    No full text
    The first total synthesis of the dihydrooxepine-containing epidithiodiketopiperazine (ETP) (βˆ’)-acetylaranotin (<b>1</b>) is reported. The key steps of the synthesis include an enantioselective azomethine ylide (1,3)-dipolar cycloaddition reaction to set the absolute and relative stereochemistry, a rhodium-catalyzed cycloisomerization/chloride elimination sequence to generate the dihydrooxepine moiety, and a stereoretentive diketopiperazine sulfenylation to install the epidisulfide. This synthesis provides access to (βˆ’)-<b>1</b> in 18 steps from inexpensive, commercially available starting materials. We anticipate that the approach described herein will serve as a general strategy for the synthesis of additional members of the dihydrooxepine ETP family
    corecore