15 research outputs found

    Effects of Time-Varying Relative Spectral Response on the Calibration of MODIS Reflective Solar Bands

    Get PDF
    Calibration of the on-orbit gain changes of the narrow bandwidth reflective solar bands (RSB) of Terra and Aqua MODIS is usually based on the band center wavelength. The relative spectral response (RSR) of each band is assumed to be constant on orbit and the time dependence of an overall gain factor is calculated. Any on-orbit changes to the RSR of the MODIS bands will introduce some error into the calibration and may also have an impact on the Earth scene radiance retrieval. We consider two different ways to track how the RSR of the MODIS RSB may be changing on orbit, and the effect that these changes will have on the calibration. First, we examine in-band RSR measurements from the spectro-radiometric calibration assembly (SRCA) carried on-board both MODIS instruments. Second, we study the broadband degradation of the MODIS scan mirror and how it may be changing the effective out-of-band response of the RSB. We find that RSR changes have a small effect on the radiance calibrated using the on-board solar diffuser, generally less than 0.5% in all cases at any time in the missions, with bands 1, 8, and 9 impacted the most

    Cross-Calibration of the Oceansat-2 Ocean Colour Monitor (OCM) with Terra and Aqua MODIS

    Get PDF
    The Ocean Colour Monitor (OCM) sensor on-board the Oceansat-2 spacecraft has been operational since its launch in September, 2009. The Oceansat 2 OCM primary design goal is to provide continuity to Oceansat-1 OCM to obtain information regarding various ocean-colour variables. OCM acquires Earth scene measurements in eight multi-spectral bands in the range from 402 to 885 nm. The MODIS sensor on the Terra and Aqua spacecraft has been successfully operating for over a decade collecting measurements of the earth's land, ocean surface and atmosphere. The MODIS spectral bands, designed for land and ocean applications, cover the spectral range from 412 to 869 nm. This study focuses on comparing the radiometric calibration stability of OCM using near-simultaneous TOA measurements with Terra and Aqua MODIS acquired over the Libya 4 target. Same-day scene-pairs from all three sensors (OCM, Terra and Aqua MODIS) between August, 2014 and September, 2015 were chosen for this analysis. On a given day, the OCM overpass is approximately an hour after the Terra overpass and an hour before the Aqua overpass. Due to the orbital differences between Terra and Aqua, MODIS images the Libya 4 site at different scan-angles on a given day. Some of the high-gain ocean bands for MODIS tend to saturate while viewing the bright Libya 4 target, but bands 8-10 (412 nm - 486 nm) provide an unsaturated response and are used for comparison with the spectrally similar OCM bands. All the standard corrections such as bidirectional reflectance factor (BRDF), relative spectral response mismatch, and impact for atmospheric water-vapor are applied to obtain the reflectance differences between OCM and the two MODIS instruments. Furthermore, OCM is used as a transfer radiometer to obtain the calibration differences between Terra and Aqua MODIS reflective solar bands

    Comparison of MODIS Solar Diffuser Stability Monitor Calibration Results for Different Operational Configurations

    Get PDF
    The MODIS instruments on the Terra and Aqua spacecraft use a sunlit solar diffuser (SD), with an optional SD attenuation screen (SDS), to calibrate the reflective solar bands. A solar diffuser stability monitor (SDSM) is used to track the SD reflectance degradation on orbit, by taking a ratio of the detector response when viewing the SD compared to the response when viewing the sun. The MODIS SDSMs have been operated both with and without the SDS in place. The SDSMs have also been operated in both a fixed and an alternating mode. In the alternating mode, the SDSM detectors view the SD, sun, and a dark background in an alternating pattern with the view changing on every MODIS scan within a single orbit. In the fixed mode, the SDSM detectors are fixed on the sun view for one orbit, and then are fixed on the SD view for the following orbit. This paper reviews the history of the SDSM operational configurations used throughout the MODIS missions and discusses the differences in the SD degradation results, which may be due to differences in sun-satellite geometry, SD signal level, and stray light effects. We highlight Aqua SDSM results from two recent dates in October 2017 and July 2019, where both the fixed and alternating mode calibrations were run on the same day, providing clear examples of the calibration differences. Additionally, we show how mixing the results from calibrations done with and without the SDS for Aqua MODIS can provide more stable results

    On-Orbit Characterization of the MODIS SDSM Screen for Solar Diffuser Degradation Estimation

    Get PDF
    MODIS reflective solar bands (RSB) are calibrated on-orbit using a solar diffuser (SD) with its degradation tracked by an on-board solar diffuser stability monitor (SDSM). The SDSM has nine detectors with wavelengths from 0.41 to 0.94 micrometers. It is operated during each scheduled SD calibration event, making alternate observations of the Sun and the SD. Due to erroneous design parameters, which led to misalignment of the key elements in the SDSM, there are significant ripples in the Sun view responses as the solar viewing angle changes. At the mission beginning, the effect of the ripples was eliminated by normalizing each SDSM detector response to the response of detector 9 (D9) at 0.94 micrometers, assuming that D9 had no degradation. However, D9 degradation increases over MODIS operation times. Degradation of up to 2% has been recently observed in D9 for Terra MODIS. A newly implemented approach reduces the Sun view ripples using a look-up table (LUT) constructed using SDSM data carefully selected from a short period early in the mission lifetime. In this paper, we provide an overview of different approaches that have been applied over the years by the MODIS Characterization Support Team (MCST) to track the on-orbit SD degradation. We evaluate the overall SD and SDSM on-orbit performance for both Terra and Aqua MODIS, as well as the impact on the MODIS RSB calibration uncertainty

    Prelaunch and On-Orbit Electronic Calibration for Earth Observing Instruments

    Get PDF
    "The Electronic Calibration (Ecal) tests are performed during various stages of instrument development to examinethe linearity of the instrument electronics. During this process, charges with stepwise increments are injected inthe analog electronics circuitry to generate a ramp signal that can be used to characterize any nonlinearities in theelectronics. The prelaunch characterization of MODIS (on the Terra and Aqua platforms) and VIIRS (on SNPP,JPSS-1 and JPSS-2) involved a regular evaluation of the electronics linearity using the Ecal tests. On orbit,the Ecal tests have been regularly performed over the mission for both the MODIS instruments to derive theelectronics gain and linearity. Unlike MODIS, the Ecal tests on the VIIRS instruments are performed on an as-needed basis. To date, no Ecal tests were performed for S-NPP VIIRS on orbit. The VIIRS instrument on JPSS-1(now NOAA 20) was launched on November 18, 2017. An Ecal test was performed to support the instrumentsinitial post-launch performance assessment. Shortly after the first on-orbit emissive band calibration, degradationin the instrument gain was observed for the LWIR bands (M15, M16 and I5). As a part of the investigationrelated to this anomaly, a second Ecal test was performed and results were compared with the prelaunch results.In this paper, we discuss the prelaunch Ecal tests and representative results from MODIS and VIIRS prelaunchcharacterization. Also, discussed are the on-orbit results from the two MODIS instruments as well as from therecently launched VIIRS instrument.

    Early Results from NOAA-20 (JPSS-1) Viirs On-Orbit Calibration and Characterization

    Get PDF
    Since launch in November 2018, the VIIRS on-board the NOAA-20 (or JPSS-1) satellite has completed its initial intensive on-orbit check-outs and several key calibration and validation activities scheduled to help evaluate sensor at launch performance. This paper provides a brief overview of NOAA-20 VIIRS on-orbit operation and calibration activities, presents early results derived from its on-board calibrators and lunar observations, and discusses potential improvements and future effort to assure sensor data product quality

    On-Orbit Characterization of the MODIS SDSM Screen for Solar Diffuser Degradation Estimation

    No full text

    MODIS Reflective Solar Bands On-Orbit Calibration and Performance

    No full text
    corecore