10 research outputs found

    Portable Visible-Light Photocatalysts Constructed from Cu<sub>2</sub>O Nanoparticles and Graphene Oxide in Cellulose Matrix

    No full text
    For the first time, portable visible-light photocatalysts were fabricated by in situ synthesizing Cu<sub>2</sub>O in the micropores of regenerated cellulose (RC)/graphene oxide (GO) composite films, in which the porous matrix was used as a microreactor for the formation of Cu<sub>2</sub>O nanoparticles. Cu<sub>2</sub>O nanoparticles were immobilized and evenly distributed in the RC matrix to excite and generate free photoelectrons and electron holes, leading to the high photodegradation efficiency against methyl orange dye under visible-light irradiation. Moreover, the introduction of GO has dramatically improved the photocatalytic activities of Cu<sub>2</sub>O nanoparticles in the Cu<sub>2</sub>O/GO/RC nanocomposite films, leading to a significant enhancement of the photodegradation rate from 2.0 to 6.5 mg h<sup>–1</sup> g<sub>cat</sub><sup>–1</sup>. In the Cu<sub>2</sub>O/GO/RC photocatalysts, Cu<sub>2</sub>O nanoparticles inside the matrix tended to generate on the GO sheets, which transferred the yielded photoelectrons to prevent local high potential zone generation and to induce the chain degradation reaction at more points, leading to the improvement of the photocatalyst activity. Moreover, the portable photocatalysts could be easily recycled and reused, showing great potential applications for wastewater purification by utilizing solar energy

    High-Strength Films Consisted of Oriented Chitosan Nanofibers for Guiding Cell Growth

    No full text
    Chitosan has biocompatibility and biodegradability; however, the practical use of the bulk chitosan materials is hampered by its poor strength, which can not satisfy the mechanical property requirement of organs. Thus, the construction of highly strong chitosan-based materials has attracted much attention. Herein, the high strength nanofibrous hydrogels and films (CS-E) were fabricated from the chitosan solution in LiOH/KOH/urea aqueous system via a mild regenerating process. Under the mild condition (ethanol at low temperature) without the severe fluctuation in the system, the alkaline-urea shell around the chitosan chains was destroyed, and the naked chitosan molecules had sufficient time for the orderly arrangement in parallel manner to form relatively perfect nanofibers. The nanofibers physically cross-linked to form CS-E hydrogels, which could be easily oriented by drawing to achieve a maximum orientation index of 84%, supported by the scanning electron microscopy and two-dimensional wide-angle X-ray diffraction. The dried CS-E films could be bent and folded arbitrarily to various complex patterns and shapes. The oriented CS-E films displayed even ultrahigh tensile strength (282 MPa), which was 5.6× higher than the chitosan films prepared by the traditional acid dissolving method. The CS-E hydrogels possessed hierarchically porous structure, beneficial to the cell adhesion, transportation of nutrients, and removal of metabolic byproducts. The cell assay results demonstrated that the CS-E hydrogels were no cytotoxicity, and osteoblastic cells could adhere, spread, and proliferate well on their surface. Furthermore, the oriented CS-E hydrogels could regulate the directional growth of osteoblastic cells along the orientation direction, on the basis of the filopodia of the cells to extend and adhere on the nanofibers. This work provided a novel approach to construct the oriented high strength chitosan hydrogels and films

    Translational Entropy and Dispersion Energy Jointly Drive the Adsorption of Urea to Cellulose

    No full text
    The adsorption of urea on cellulose at room temperature has been studied using adsorption isotherm experiments and molecular dynamics (MD) simulations. The immersion of cotton cellulose into bulk urea solutions with concentrations between 0.01 and 0.30 g/mL led to a decrease in urea concentration in all solutions, allowing the adsorption of urea on the cellulose surface to be measured quantitatively. MD simulations suggest that urea molecules form sorption layers on both hydrophobic and hydrophilic surfaces. Although electrostatic interactions accounted for the majority of the calculated interaction energy between urea and cellulose, dispersion interactions were revealed to be the key driving force for the accumulation of urea around cellulose. The preferred orientation of urea and water molecules in the first solvation shell varied depending on the nature of the cellulose surface, but urea molecules were systematically oriented parallel to the hydrophobic plane of cellulose. The translational entropies of urea and water molecules, calculated from the velocity spectrum of the trajectory, are lower near the cellulose surface than in bulk. As urea molecules adsorb on cellulose and expel surface water into the bulk, the increase in the translational entropy of the water compensated for the decrease in the entropy of urea, resulting in a total entropy gain of the solvent system. Therefore, the cellulose–urea dispersion energy and the translational entropy gain of water are the main factors that drive the adsorption of urea on cellulose

    MXene-Mediated Cellulose Conductive Hydrogel with Ultrastretchability and Self-Healing Ability

    No full text
    Constructing natural polymers such as cellulose, chitin, and chitosan into hydrogels with excellent stretchability and self-healing properties can greatly expand their applications but remains very challenging. Generally, the polysaccharide-based hydrogels have suffered from the trade-off between stiffness of the polysaccharide and stretchability due to the inherent nature. Thus, polysaccharide-based hydrogels (polysaccharides act as the matrix) with self-healing properties and excellent stretchability are scarcely reported. Here, a solvent-assisted strategy was developed to construct MXene-mediated cellulose conductive hydrogels with excellent stretchability (∼5300%) and self-healability. MXene (an emerging two-dimensional nanomaterial) was introduced as emerging noncovalent cross-linking sites between the solvated cellulose chains in a benzyltrimethyl­ammonium hydroxide aqueous solution. The electrostatic interaction between the cellulose chains and terminal functional groups (O, OH, F) of MXene led to cross-linking of the cellulose chains by MXene to form a hydrogel. Due to the excellent properties of the cellulose–MXene conductive hydrogel, the work not only enabled their strong potential in both fields of electronic skins and energy storage but provided fresh ideas for some other stubborn polymers such as chitin to prepare hydrogels with excellent properties

    Rubbery Chitosan/Carrageenan Hydrogels Constructed through an Electroneutrality System and Their Potential Application as Cartilage Scaffolds

    No full text
    In the present work, the bulk and homogeneous composite hydrogels were successfully constructed from positively charged chitosan (CS) and negatively charged carrageenan (CG) in alkali/urea aqueous solution via a simple one-step approach for the first time. An electroneutral CS solution was achieved in alkali/urea, leading to a homogeneous solution blended by CS and CG, which could not be realized in acidic medium because of the agglomeration caused by polycation and polyanion. Subsequently, the CS/CG composite hydrogels with multiple cross-linked networks were prepared from blend solution by using epichlorohydrin (ECH) as the cross-linking agent. The composite hydrogels exhibited hierarchically porous architecture, excellent mechanical properties as well as pH- and salt-responsiveness. Importantly, the composite hydrogels were successfully applied for spreading ATDC5 cells, showing high attachment and proliferation of cells. The results of fluorescent micrographs and scanning electronic microscope images revealed that the CS/CG composite hydrogels enhanced the adhesion and viability of ATDC5 cells. The alcian blue staining, glycosaminoglycan quantification, and real-time PCR analysis proved that the CS/CG composite hydrogels could induce chondrogenic differentiation of ATDC5 cells in vitro, exhibiting great potential for application in cartilage repair. This work provides a facile and fast fabrication pathway for the construction of ampholytic hydrogel from polycation and polyanion in an electroneutrality system

    Intermolecular Interaction and the Extended Wormlike Chain Conformation of Chitin in NaOH/Urea Aqueous Solution

    No full text
    The intra- and intermolecular interactions of chitin in NaOH/urea aqueous system were studied by a combination of NMR measurements (including <sup>13</sup>C NMR, <sup>23</sup>Na NMR, and <sup>15</sup>N NMR) and differential scanning calorimetry. The results revealed that the NaOH and chitin formed a hydrogen-bonded complex that was surrounded by the urea hydrates to form a sheath-like structure, leading to the good dissolution. The optimal concentration range, in which chitin was molecularly dispersed in NaOH/urea aqueous, was found to investigate the chain conformation in the dilute solution with a combination of static and dynamic light scattering. The weight-average molecular weight (<i>M</i><sub>w</sub>), radii of gyration (⟨<i>R</i><sub>g</sub>⟩<sub><i>z</i></sub>), and hydrodynamic radii (⟨<i>R</i><sub>h</sub>⟩<sub><i>z</i></sub>) values of chitin were determined, and the structure-sensitive parameter (ρ) and persistent length (<i>L</i><sub>p</sub>) were calculated to be >2.0 and ∼30 nm, respectively, suggesting an extended wormlike chain conformation. The visualized images from TEM, cryo-TEM, and AFM indicated that, chitin nanofibers were fabricated from the parallel aggregation of chitin chains in NaOH/urea system. This work would provide a theoretical guidance for constructing novel chitin-based nanomaterials via “bottom-up” method at the molecular level

    Dissolution and Metastable Solution of Cellulose in NaOH/Thiourea at 8 °C for Construction of Nanofibers

    No full text
    To develop a facile approach for the dissolution of cellulose, a novel solvent (9.3 wt % NaOH/7.4 wt % thiourea aqueous solution) was used, for the first time, to dissolve cellulose within 5 min at 8 °C. The results of NMR and Raman spectra demonstrated that stable thiourea···OH<sup>–</sup> complexes were formed through strong hydrogen bonds in NaOH/thiourea at room temperature. Moreover, the strength of the hydrogen bonds in thiourea···OH<sup>–</sup> complexes was much higher than that in urea···OH<sup>–</sup> complexes, and the number of thiourea···OH<sup>–</sup> complexes increased significantly in 9.3 wt % NaOH/7.4 wt % thiourea compared to that in 9.5 wt % NaOH/4.5 wt % thiourea, which dissolved cellulose at −5 °C, leading to the dissolution of cellulose at a relatively high temperature (8 °C). The cellulose that dissolved at such a high temperature was metastable. The results of dynamic light scattering and transmission electron microscope experiments confirmed that the extended cellulose chains and their aggregates coexisted in the dilute cellulose solution. Interestingly, stiff cellulose chains could be self-assembled in parallel to form nanofibers in the metastable cellulose solution, from which cellulose microspheres consisting of nanofibers could be easily produced by inducing heating. This work not only proposed a novel method for the dissolution of cellulose in aqueous system at temperatures over 0 °C but also opened up a new pathway for the construction of nanofibrous cellulose materials

    Effects of Chitin Whiskers on Physical Properties and Osteoblast Culture of Alginate Based Nanocomposite Hydrogels

    No full text
    Novel nanocomposite hydrogels composed of polyelectrolytes alginate and chitin whiskers with biocompatibility were successfully fabricated based on the pH-induced charge shifting behavior of chitin whiskers. The chitin whiskers with mean length and width of 300 and 20 nm were uniformly dispersed in negatively charged sodium alginate aqueous solution, leading to the formation of the homogeneous nanocomposite hydrogels. The experimental results indicated that their mechanical properties were significantly improved compared to alginate hydrogel and the swelling trends were inhibited as a result of the strong electrostatic interactions between the chitin whiskers and alginate. The nanocomposite hydrogels exhibited certain crystallinity and hierarchical structure with nanoscale chitin whiskers, similar to the structure of the native extracellular matrix. Moreover, the nanocomposite hydrogels were successfully applied as bone scaffolds for MC3T3-E1 osteoblast cells, showing their excellent biocompatibility and low cytotoxicity. The results of fluorescent micrographs and scanning electronic microscope (SEM) images revealed that the addition of chitin whiskers into the nanocomposite hydrogels markedly promoted the cell adhesion and proliferation of the osteoblast cells. The biocompatible nanocomposite hydrogels have potential application in bone tissue engineering

    Intermolecular Interactions and 3D Structure in Cellulose–NaOH–Urea Aqueous System

    No full text
    The dissolution of cellulose in NaOH/urea aqueous solution at low temperature is a key finding in cellulose science and technology. In this paper, <sup>15</sup>N and <sup>23</sup>Na NMR experiments were carried out to clarify the intermolecular interactions in cellulose/NaOH/urea aqueous solution. It was found that there are direct interactions between OH<sup>–</sup> anions and amino groups of urea through hydrogen bonds and no direct interaction between urea and cellulose. Moreover, Na<sup>+</sup> ions can interact with both cellulose and urea in an aqueous system. These interactions lead to the formation of cellulose–NaOH–urea–H<sub>2</sub>O inclusion complexes (ICs). <sup>23</sup>Na relaxation results confirmed that the formation of urea–OH<sup>–</sup> clusters can effectively enhance the stability of Na<sup>+</sup> ions that attracted to cellulose chains. Low temperature can enhance the hydrogen bonding interaction between OH<sup>–</sup> ions and urea and improve the binding ability of the NaOH/urea/H<sub>2</sub>O clusters that attached to cellulose chains. Cryo-TEM observation confirmed the formation of cellulose–NaOH–urea–H<sub>2</sub>O ICs, which is in extended conformation with mean diameter of about 3.6 nm and mean length of about 300 nm. Possible 3D structure of the ICs was proposed by the M06-2X/6-31+G­(d) theoretical calculation, revealing the O3H···O5 intramolecular hydrogen bonds could remain in the ICs. This work clarified the interactions in cellulose/NaOH/urea aqueous solution and the 3D structure of the cellulose chain in dilute cellulose/NaOH/urea aqueous solution

    Mechanically Strong Multifilament Fibers Spun from Cellulose Solution via Inducing Formation of Nanofibers

    No full text
    Mechanically strong cellulose fibers spun with environmentally friendly technology have been under tremendous consideration in the textile industry. Here, by inducing the nanofibrous structure formation, a novel cellulose fiber with high strength has been designed and spun successfully on a lab-scale spinning machine. The cellulose–NaOH–urea solution containing 0.5 wt % LiOH was regenerated in 15 wt % phytic acid/5 wt % Na<sub>2</sub>SO<sub>4</sub> aqueous solution at 5 °C, in which the alkali–urea complex as shell on the cellulose chain was destroyed, so the naked stiff macromolecules aggregated sufficiently in a parallel manner to form nanofibers with apparent average diameter of 25 nm. The cellulose fibers consisting of the nanofibers exhibited high degree of orientation with Herman’s parameter of 0.9 and excellent mechanical properties with tensile strength of 3.5 cN/dtex in the dry state and 2.5 cN/dtex in the wet state, as well as low fibrillation. This work provided a novel approach to produce high-quality cellulose multifilament with nanofibrous structure, showing a great potential in the material processing
    corecore