38 research outputs found

    Soluble histone H2AX is induced by DNA replication stress and sensitizes cells to undergo apoptosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chromatin-associated histone H2AX is a key regulator of the cellular responses to DNA damage. However, non-nucleosomal functions of histone H2AX are poorly characterized. We have recently shown that soluble H2AX can trigger apoptosis but the mechanisms leading to non-chromatin-associated H2AX are unclear. Here, we tested whether stalling of DNA replication, a common event in cancer cells and the underlying mechanism of various chemotherapeutic agents, can trigger increased soluble H2AX.</p> <p>Results</p> <p>Transient overexpression of H2AX was found to lead to a detectable fraction of soluble H2AX and was associated with increased apoptosis. This effect was enhanced by the induction of DNA replication stress using the DNA polymerase α inhibitor aphidicolin. Cells manipulated to stably express H2AX did not contain soluble H2AX, however, short-term treatment with aphidicolin (1 h) resulted in detectable amounts of H2AX in the soluble nuclear fraction and enhanced apoptosis. Similarly, soluble endogenous H2AX was detected under these conditions. We found that excessive soluble H2AX causes chromatin aggregation and inhibition of ongoing gene transcription as evidenced by the redistribution and/or loss of active RNA polymerase II as well as the transcriptional co-activators CBP and p300.</p> <p>Conclusion</p> <p>Taken together, these results show that DNA replication stress rapidly leads to increased soluble H2AX and that non-chromatin-associated H2AX can sensitize cells to undergo apoptosis. Our findings encourage further studies to explore H2AX and the cellular pathways that control its expression as anti-cancer drug targets.</p

    Progress towards a public chemogenomic set for protein kinases and a call for contributions

    Get PDF
    Protein kinases are highly tractable targets for drug discovery. However, the biological function and therapeutic potential of the majority of the 500+ human protein kinases remains unknown. We have developed physical and virtual collections of small molecule inhibitors, which we call chemogenomic sets, that are designed to inhibit the catalytic function of almost half the human protein kinases. In this manuscript we share our progress towards generation of a comprehensive kinase chemogenomic set (KCGS), release kinome profiling data of a large inhibitor set (Published Kinase Inhibitor Set 2 (PKIS2)), and outline a process through which the community can openly collaborate to create a KCGS that probes the full complement of human protein kinases

    A novel role of the aryl hydrocarbon receptor (AhR) in centrosome amplification - implications for chemoprevention

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Centrosome aberrations can cause genomic instability and correlate with malignant progression in common human malignancies such as breast and prostate cancer. Deregulation of cyclin/cyclin-dependent kinase 2 (CDK2) activity has previously been shown to be critically involved in centrosome overduplication. We therefore test here whether small molecule CDK inhibitors derived from the <it>bis</it>-indole indirubin can be used to suppress centrosome aberrations as a novel approach to chemoprevention of malignant progression.</p> <p>Results</p> <p>As expected, we found that the CDK inhibitor indirubin-3'-oxime (IO) suppresses centrosome amplification in breast cancer cells. However, we made the unexpected discovery that indirubin-derived compounds that have been chemically modified to be inactive as kinase inhibitors such as 1-methyl-indirubin-3'-oxime (MeIO) still significantly reduced centrosome amplification. All indirubins used in the present study are potent agonists of the aryl hydrocarbon receptor (AhR), which is known for its important role in the cellular metabolism of xenobiotics. To corroborate our results, we first show that the coincidence of nuclear AhR overexpression, reflecting a constitutive activation, and numerical centrosome aberrations correlates significantly with malignancy in mammary tissue specimens. Remarkably, a considerable proportion (72.7%) of benign mammary tissue samples scored also positive for nuclear AhR overexpression. We furthermore provide evidence that continued expression of endogenous AhR is critical to promote centriole overduplication induced by cyclin E and that AhR and cyclin E may function in the same pathway. Overexpression of the AhR in the absence of exogenous ligands was found to rapidly disrupt centriole duplication control. Nonetheless, the AhR agonists IO and MeIO were still found to significantly reduce centriole overduplication stimulated by ectopic AhR expression.</p> <p>Conclusions</p> <p>Our results indicate that continued expression of endogenous AhR promotes centrosome amplification in breast cancer cells in a pathway that involves cyclin E. AhR agonists such as indirubins inhibit centrosome amplification even when stimulated by ectopic expression of the AhR suggesting that these compounds are potentially useful for the chemoprevention of centrosome-mediated cell division errors and malignant progression in neoplasms in which the AhR is overexpressed. Future studies are warranted to determine whether individuals in which nuclear AhR overexpression is detected in benign mammary tissue are at a higher risk for developing pre-cancerous or cancerous breast lesions.</p

    Tripeptidyl Peptidase II Is Required for c-MYC–Induced Centriole Overduplication and a Novel Therapeutic Target in c-MYC–Associated Neoplasms

    No full text
    Centrosome aberrations are frequently detected in c-MYC–associated human malignancies. Here, we show that c-MYC–induced centrosome and centriole overduplication critically depend on the protease tripeptidyl peptidase II (TPPII). We found that TPPII localizes to centrosomes and that overexpression of TPPII, similar to c-MYC, can disrupt centriole duplication control and cause centriole multiplication, a process during which maternal centrioles nucleate the formation of more than a single daughter centriole. We report that inactivation of TPPII using chemical inhibitors or siRNA-mediated protein knockdown effectively reduced c-MYC–induced centriole overduplication. Remarkably, the potent and selective TPPII inhibitor butabindide not only potently suppressed centriole aberrations but also caused significant cell death and growth suppression in aggressive human Burkitt lymphoma cells with c-MYC overexpression. Taken together, these results highlight the role of TPPII in c-MYC–induced centriole overduplication and encourage further studies to explore TPPII as a novel antineoplastic drug target
    corecore