9 research outputs found

    Synthesis and Reactions of a Cyclopentadienyl-Amidinate Titanium <i>tert-</i>Butoxyimido Compound

    No full text
    We report the first detailed reactivity study of a group 4 alkoxyimido complex, namely Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(NO<sup>t</sup>Bu) (<b>19</b>), with heterocumulenes, aldehydes, ketones, organic nitriles, Ar<sup>F<sub>5</sub></sup>CCH, and B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub> (Ar<sup>F<sub>5</sub></sup> = C<sub>6</sub>F<sub>5</sub>). Compound <b>19</b> was synthesized via imide/alkoxyamine exchange from Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(N<sup>t</sup>Bu) and <sup>t</sup>BuONH<sub>2</sub>. Reaction of <b>19</b> with CS<sub>2</sub> and Ar′NCO (Ar′ = 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub>) gave the [2 + 2] cycloaddition products Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{SC­(S)­N­(O<sup>t</sup>Bu)} and Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{N­(O<sup>t</sup>Bu)­C­(NAr′)­O}, respectively, whereas reaction with 2 equiv of TolNCO afforded Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{OC­(NTol)­N­(Tol)­C­(NO<sup>t</sup>Bu)­O} following a sequence of cycloaddition–extrusion and cycloaddition–insertion steps. Net NO<sup>t</sup>Bu group transfer was observed with both <sup>t</sup>BuNCO and PhC­(O)­R, yielding the oxo-bridged dimer [Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(μ-O)]<sub>2</sub> and either the alkoxycarbodiimide <sup>t</sup>BuNCNO<sup>t</sup>Bu or the oxime ethers PhC­(NO<sup>t</sup>Bu)­R (R = H (<b>25a</b>), Me (<b>25b</b>), Ph (<b>25c</b>)). DFT studies showed that in the reaction with PhC­(O)­R (R = H, Me) the product distribution between the <i>syn</i> and <i>anti</i> isomers of PhC­(NO<sup>t</sup>Bu)­R was under kinetic control. Reaction of <b>19</b> with ArCN gave the TiN<sub>α</sub> insertion products Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{NC­(Ar)­NO<sup>t</sup>Bu} (Ar = Ph (<b>28</b>), 2,6-C<sub>6</sub>H<sub>3</sub>F<sub>2</sub> (<b>27</b>), Ar<sup>F<sub>5</sub></sup> (<b>26</b>)) containing <i>tert</i>-butoxybenzimidamide ligands. Reaction of <b>19</b> or <b>26</b> with an excess of Ar<sup>F<sub>5</sub></sup>CN gave Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{NC­(Ar<sup>F<sub>5</sub></sup>)­NC­(Ar<sup>F<sub>5</sub></sup>)­N­(C­{Ar<sup>F<sub>5</sub></sup>}­NO<sup>t</sup>Bu)} (<b>29</b>) following net head-to-tail coupling of 2 equiv of Ar<sup>F<sub>5</sub></sup>CN across the TiN<sub>α</sub> bond of <b>26</b>. Reductive N<sub>α</sub>–O<sub>β</sub> bond cleavage was observed with Ar<sup>F<sub>5</sub></sup>CCH, forming Cp*Ti­(O<sup>t</sup>Bu)­{NC­(Ar<sup>F<sub>5</sub></sup>)­C­(H)­N­(<sup>i</sup>Pr)­C­(Ph)­N­(<sup>i</sup>Pr)} (<b>30</b>). Addition of 2 equiv of [Et<sub>3</sub>NH]­[BPh<sub>4</sub>] to <b>19</b> in THF-<i>d</i><sub>8</sub> resulted in protonolysis of the amidinate ligand, forming [PhC­(NH<sup>i</sup>Pr)<sub>2</sub>]­[BPh<sub>4</sub>] and the cationic alkoxyimido complex [Cp*Ti­(NO<sup>t</sup>Bu)­(THF-<i>d</i><sub>8</sub>)<sub>2</sub>]<sup>+</sup>. In contrast, reaction with B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub> resulted in elimination of isobutene and formation of Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{η<sup>2</sup>-ON­(H)­B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub>}

    Synthesis and Reactivity of Titanium Hydrazido Complexes Supported by Diamido-Ether Ligands

    No full text
    The synthesis and reactivity of titanium diphenyl hydrazido(2−) complexes supported by the diamido-ether ligands O­(2-C<sub>6</sub>H<sub>4</sub>NSiMe<sub>3</sub>)<sub>2</sub> (N<sub>2</sub><sup>Ar</sup>O) and O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)<sub>2</sub> (N<sub>2</sub>O) are described. Reaction of Li<sub>2</sub>N<sub>2</sub><sup>Ar</sup>O or Li<sub>2</sub>N<sub>2</sub>O with Ti­(NNPh<sub>2</sub>)­Cl<sub>2</sub>(py)<sub>3</sub> afforded Ti­(N<sub>2</sub><sup>Ar</sup>O)­(NNPh<sub>2</sub>)­(py)<sub>2</sub> (<b>14</b>) or Ti­(N<sub>2</sub>O)­(NNPh<sub>2</sub>)­(py)<sub>2</sub> (<b>15</b>) with κ<sup>3</sup>-<i>mer</i>-bound diamido-ether ligands. Reaction with <sup>t</sup>Bu-bipy (4,4′-di-<i>tert</i>-butyl-2,2′-bipyridyl) or bipy (2,2′-bipyridyl) gave a switch to κ<sup>3</sup>-<i>fac</i>-coordination. Reaction of <b>15</b> with Ar′NCO (Ar′ = 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub>) gave Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NC­(O)­N­(SiMe<sub>3</sub>)­Ar′)}-{N­(NPh<sub>2</sub>)­C­(O)­N­(Ar′)}, in which the substrate has inserted into a Ti–N<sub>amide</sub> bond of N<sub>2</sub>O as well as adding to the TiN<sub>α</sub> multiple bond. With Ar′NCS the [2+2] cycloaddition product Ti­(N<sub>2</sub>O)­{N­(NPh<sub>2</sub>)­C­(NAr′)­S}­(py) was obtained, and with Ar′NCSe a mixture was formed including Ti<sub>2</sub>(N<sub>2</sub>O)<sub>2</sub>(μ-Se)<sub>2</sub>. Both <b>14</b> and <b>15</b> reacted with Ar<sup>Fx</sup>CN (Ar<sup>Fx</sup> = C<sub>6</sub>H<sub>3</sub>F<sub>2</sub> or C<sub>6</sub>F<sub>5</sub>) to give TiN<sub>α</sub> bond insertion products of the type Ti­(L)­{NC­(Ar<sup>Fx</sup>)­NNPh<sub>2</sub>}­(py)<sub>2</sub> (L = N<sub>2</sub><sup>Ar</sup>O or N<sub>2</sub>O) containing hydrazonamide ligands. Reaction of <b>14</b> with XylNC (Xyl = 2,6-C<sub>6</sub>H<sub>3</sub>Me<sub>2</sub>) gave only the isonitrile σ-adduct Ti­(N<sub>2</sub><sup>Ar</sup>O)­(NNPh<sub>2</sub>)­(py)­(CNXyl), whereas <b>15</b> underwent N<sub>α</sub>–N<sub>β</sub> bond reductive cleavage with <sup>t</sup>BuNC or XylNC forming Ti­(N<sub>2</sub>O)­(NPh<sub>2</sub>)­(NCN<sup>t</sup>Bu) or Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NCN­(SiMe<sub>3</sub>)­Xyl)}­(NPh<sub>2</sub>)­(NCNXyl) (<b>27</b>). Both contain metalated carbodiimide ligands, but in <b>27</b> an additional reaction of XylNC with the Ti–N<sub>amide</sub> bond of N<sub>2</sub>O has taken place. Compound <b>15</b> also reacted with a number of internal alkynes RCCR′ (R = R′ = Me or Ph; R = Me, R′ = aryl) to give N<sub>α</sub>–N<sub>β</sub> bond reductive cleavage products of the type Ti­{O­(CH<sub>2</sub>CH<sub>2</sub>NSiMe<sub>3</sub>)­(CH<sub>2</sub>CH<sub>2</sub>NC­(R)­C­(R′)­NSiMe<sub>3</sub>}­(NPh<sub>2</sub>), again involving a reaction of a Ti–N<sub>amide</sub> bond

    Synthesis and Reactions of a Cyclopentadienyl-Amidinate Titanium <i>tert-</i>Butoxyimido Compound

    No full text
    We report the first detailed reactivity study of a group 4 alkoxyimido complex, namely Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(NO<sup>t</sup>Bu) (<b>19</b>), with heterocumulenes, aldehydes, ketones, organic nitriles, Ar<sup>F<sub>5</sub></sup>CCH, and B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub> (Ar<sup>F<sub>5</sub></sup> = C<sub>6</sub>F<sub>5</sub>). Compound <b>19</b> was synthesized via imide/alkoxyamine exchange from Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(N<sup>t</sup>Bu) and <sup>t</sup>BuONH<sub>2</sub>. Reaction of <b>19</b> with CS<sub>2</sub> and Ar′NCO (Ar′ = 2,6-C<sub>6</sub>H<sub>3</sub><sup>i</sup>Pr<sub>2</sub>) gave the [2 + 2] cycloaddition products Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{SC­(S)­N­(O<sup>t</sup>Bu)} and Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{N­(O<sup>t</sup>Bu)­C­(NAr′)­O}, respectively, whereas reaction with 2 equiv of TolNCO afforded Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{OC­(NTol)­N­(Tol)­C­(NO<sup>t</sup>Bu)­O} following a sequence of cycloaddition–extrusion and cycloaddition–insertion steps. Net NO<sup>t</sup>Bu group transfer was observed with both <sup>t</sup>BuNCO and PhC­(O)­R, yielding the oxo-bridged dimer [Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­(μ-O)]<sub>2</sub> and either the alkoxycarbodiimide <sup>t</sup>BuNCNO<sup>t</sup>Bu or the oxime ethers PhC­(NO<sup>t</sup>Bu)­R (R = H (<b>25a</b>), Me (<b>25b</b>), Ph (<b>25c</b>)). DFT studies showed that in the reaction with PhC­(O)­R (R = H, Me) the product distribution between the <i>syn</i> and <i>anti</i> isomers of PhC­(NO<sup>t</sup>Bu)­R was under kinetic control. Reaction of <b>19</b> with ArCN gave the TiN<sub>α</sub> insertion products Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{NC­(Ar)­NO<sup>t</sup>Bu} (Ar = Ph (<b>28</b>), 2,6-C<sub>6</sub>H<sub>3</sub>F<sub>2</sub> (<b>27</b>), Ar<sup>F<sub>5</sub></sup> (<b>26</b>)) containing <i>tert</i>-butoxybenzimidamide ligands. Reaction of <b>19</b> or <b>26</b> with an excess of Ar<sup>F<sub>5</sub></sup>CN gave Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{NC­(Ar<sup>F<sub>5</sub></sup>)­NC­(Ar<sup>F<sub>5</sub></sup>)­N­(C­{Ar<sup>F<sub>5</sub></sup>}­NO<sup>t</sup>Bu)} (<b>29</b>) following net head-to-tail coupling of 2 equiv of Ar<sup>F<sub>5</sub></sup>CN across the TiN<sub>α</sub> bond of <b>26</b>. Reductive N<sub>α</sub>–O<sub>β</sub> bond cleavage was observed with Ar<sup>F<sub>5</sub></sup>CCH, forming Cp*Ti­(O<sup>t</sup>Bu)­{NC­(Ar<sup>F<sub>5</sub></sup>)­C­(H)­N­(<sup>i</sup>Pr)­C­(Ph)­N­(<sup>i</sup>Pr)} (<b>30</b>). Addition of 2 equiv of [Et<sub>3</sub>NH]­[BPh<sub>4</sub>] to <b>19</b> in THF-<i>d</i><sub>8</sub> resulted in protonolysis of the amidinate ligand, forming [PhC­(NH<sup>i</sup>Pr)<sub>2</sub>]­[BPh<sub>4</sub>] and the cationic alkoxyimido complex [Cp*Ti­(NO<sup>t</sup>Bu)­(THF-<i>d</i><sub>8</sub>)<sub>2</sub>]<sup>+</sup>. In contrast, reaction with B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub> resulted in elimination of isobutene and formation of Cp*Ti­{PhC­(N<sup>i</sup>Pr)<sub>2</sub>}­{η<sup>2</sup>-ON­(H)­B­(Ar<sup>F<sub>5</sub></sup>)<sub>3</sub>}

    Reactivity of Boryl- and Silyl-Substituted Carbenoids toward Alkynes: Insertion and Cycloaddition Chemistry

    No full text
    Three modes of reactivity of phenyl-substituted alkynes toward acyclic tetrelenes are reported, with reaction pathways found to be dependent not only on the nature of the group 14 element but also on the supporting ligand set. Systems featuring Sn–B or Ge–B bonds undergo insertion chemistry, forming borane-appended (vinyl)­Sn<sup>II</sup> and Ge<sup>II</sup> species. With a bis­(amido)­stannylene, phenylacetylene acts as a protic acid, generating a Sn<sup>II</sup> acetylide with a unique bridged structure. Reactivity toward a more strongly reducing Si<sup>II</sup> system is dominated by the possibility of accessing Si<sup>IV</sup> via [2 + 1] cycloaddition chemistry

    Oxidative Bond Formation and Reductive Bond Cleavage at Main Group Metal Centers: Reactivity of Five-Valence-Electron MX<sub>2</sub> Radicals

    No full text
    Monomeric five-valence-electron bis­(boryl) complexes of gallium, indium, and thallium undergo oxidative M–C bond formation with 2,3-dimethylbutadiene, in a manner consistent with both the redox properties expected for M<sup>II</sup> species and with metal-centered radical character. The weaker nature of the M–C bond for the heavier two elements leads to the observation of reversibility in M–C bond formation (for indium) and to the isolation of products resulting from subsequent B–C reductive elimination (for both indium and thallium)

    Oxidative Bond Formation and Reductive Bond Cleavage at Main Group Metal Centers: Reactivity of Five-Valence-Electron MX<sub>2</sub> Radicals

    No full text
    Monomeric five-valence-electron bis­(boryl) complexes of gallium, indium, and thallium undergo oxidative M–C bond formation with 2,3-dimethylbutadiene, in a manner consistent with both the redox properties expected for M<sup>II</sup> species and with metal-centered radical character. The weaker nature of the M–C bond for the heavier two elements leads to the observation of reversibility in M–C bond formation (for indium) and to the isolation of products resulting from subsequent B–C reductive elimination (for both indium and thallium)

    Oxidative Bond Formation and Reductive Bond Cleavage at Main Group Metal Centers: Reactivity of Five-Valence-Electron MX<sub>2</sub> Radicals

    No full text
    Monomeric five-valence-electron bis­(boryl) complexes of gallium, indium, and thallium undergo oxidative M–C bond formation with 2,3-dimethylbutadiene, in a manner consistent with both the redox properties expected for M<sup>II</sup> species and with metal-centered radical character. The weaker nature of the M–C bond for the heavier two elements leads to the observation of reversibility in M–C bond formation (for indium) and to the isolation of products resulting from subsequent B–C reductive elimination (for both indium and thallium)

    A Stable Two-Coordinate Acyclic Silylene

    No full text
    Simple two-coordinate acyclic silylenes, SiR<sub>2</sub>, have hitherto been identified only as transient intermediates or thermally labile species. By making use of the strong σ-donor properties and high steric loading of the B­(NDippCH)<sub>2</sub> substituent (Dipp = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>), an isolable monomeric species, Si­{B­(NDippCH)<sub>2</sub>}­{N­(SiMe<sub>3</sub>)­Dipp}, can be synthesized which is stable in the solid state up to 130 °C. This silylene species undergoes facile oxidative addition reactions with dihydrogen (at sub-ambient temperatures) and with alkyl C–H bonds, consistent with a low singlet–triplet gap (103.9 kJ mol<sup>–1</sup>), thus demonstrating fundamental modes of reactivity more characteristic of transition metal systems

    A Stable Two-Coordinate Acyclic Silylene

    No full text
    Simple two-coordinate acyclic silylenes, SiR<sub>2</sub>, have hitherto been identified only as transient intermediates or thermally labile species. By making use of the strong σ-donor properties and high steric loading of the B­(NDippCH)<sub>2</sub> substituent (Dipp = 2,6-<sup><i>i</i></sup>Pr<sub>2</sub>C<sub>6</sub>H<sub>3</sub>), an isolable monomeric species, Si­{B­(NDippCH)<sub>2</sub>}­{N­(SiMe<sub>3</sub>)­Dipp}, can be synthesized which is stable in the solid state up to 130 °C. This silylene species undergoes facile oxidative addition reactions with dihydrogen (at sub-ambient temperatures) and with alkyl C–H bonds, consistent with a low singlet–triplet gap (103.9 kJ mol<sup>–1</sup>), thus demonstrating fundamental modes of reactivity more characteristic of transition metal systems
    corecore