4 research outputs found

    Fullerene Bromides C<sub>70</sub>Br<sub><i>n</i></sub> (<i>n</i> = 8, 10, 14) Synthesis and Identification and Phase Equilibria in the C<sub>70</sub>Br<sub><i>n</i></sub> (<i>n</i> = 8, 10, 14)/Solvent Systems

    No full text
    The paper presents experimental data on synthesis and identification (IR, UV spectra, TG, DTG, DTA analysis) of the fullerene bromides C<sub>70</sub>Br<sub><i>n</i></sub> (<i>n</i> = 8, 10, 14). The data on the temperature dependence of solubility in aromatic solvents (1,2-dichlorobenzene, benzene, 1-methylbenzene, 1,2-dimethylbenzene) in the temperature range (293 to 353 )K are presented and characterized; compositions of equilibrium solid phases in binary C<sub>70</sub>Br<sub><i>n</i></sub> (<i>n</i> = 8, 10, 14) + aromatic solvents system are determined

    Fullerenolā€‘<i>d</i> Solubility in Fullerenolā€‘<i>d</i>ā€“Inorganic Saltā€“Water Ternary Systems at 25 Ā°C

    No full text
    In this work, solubility in ternary systems fullerenol-<i>d</i>ā€“NaClā€“H<sub>2</sub>O, fullerenol-<i>d</i>ā€“Pr (NO<sub>3</sub>) <sub>3</sub>ā€“H<sub>2</sub>O, fullerenol-<i>d</i>ā€“YCl<sub>3</sub>ā€“H<sub>2</sub>O, fullerenol-<i>d</i>ā€“uranyl sulfateā€“water, and fullerenol-<i>d</i>ā€“CuCl<sub>2</sub>ā€“water at 25 Ā°C by the method of isothermal saturation in ampules was studied; a description of the results is presented

    Selective Nucleophilic Oxygenation of Palladium-Bound Isocyanide Ligands: Route to Imine Complexes That Serve as Efficient Catalysts for Copper-/Phosphine-Free Sonogashira Reactions

    No full text
    Metal-mediated reactions between <i>cis-</i>[PdCl<sub>2</sub>(CNR)<sub>2</sub>] (R = Xy (<b>1</b>), Cy (<b>2</b>), <i>t</i>Bu (<b>3</b>), C<sub>6</sub>H<sub>3</sub>(Cl-2)Ā­Me-6 (<b>4</b>)) and the <i>keto</i>nitrones Ph<sub>2</sub>Cī—»NĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>Rā€² (Rā€² = Me (<b>5</b>), Cl (<b>6</b>)) proceed in a 1:1 molar ratio as selective nucleophilic oxygenations and provide the imineā€“isocyanide complexes [PdCl<sub>2</sub>{NĀ­(C<sub>6</sub>H<sub>4</sub>Rā€²)ī—»CPh<sub>2</sub>}Ā­(CNR)] (<b>7</b>ā€“<b>14</b>: Rā€² = Me, R = Xy (<b>7</b>), Cy (<b>8</b>), <i>t</i>Bu (<b>9</b>), C<sub>6</sub>H<sub>3</sub>(Cl-2)Ā­Me-6 (<b>10</b>); Rā€² = Cl, R = Xy (<b>11</b>), Cy (<b>12</b>), <i>t</i>Bu (<b>13</b>), C<sub>6</sub>H<sub>3</sub>(Cl-2)Ā­Me-6 (<b>14</b>)) in excellent yields (90ā€“94%), while the reaction of the <i>cis-</i>[PdCl<sub>2</sub>(CNR)<sub>2</sub>] complexes with <i>aldo</i>nitrones proceeds as 1,3-dipolar cycloaddition, giving carbene adducts which then convert to the imine complexes. Theoretical calculations at the DFT level indicate that, in the case of aldonitrones, formation of the imine complexes occurs preferably via a cycloaddition/splitting pathway, including the generation of a cycloadduct, while, in the case of ketonitrones, both the cycloaddition/splitting route and the direct oxygen atom transfer pathway are equally plausible from a kinetic viewpoint. Complexes <b>7</b>ā€“<b>14</b> were characterized by elemental analyses (C, H, N), by high-resolution ESI<sup>+</sup>-MS, IR, and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopy, and also by X-ray diffraction (for <b>8</b>). The catalytic activity study conducted for <b>7</b>ā€“<b>14</b>, taken as the catalysts in the Cu-/phosphine-free Sonogashira reaction, was evaluated for a typical model system comprising 4-methoxyiodobenzene and phenylacetylene and affording 1-methoxy-4-(phenylethynyl)Ā­benzene. The obtained data indicate that <b>7</b>ā€“<b>14</b> exhibit a high catalytic activity (yields up to 95%, TONs up to 15000), and these catalysts are among the best studied so far

    Regio- and Stereoselective 1,3-Dipolar Cycloaddition of Cyclic Azomethine Imines to Platinum(IV)-Bound Nitriles Giving Ī”<sup>2</sup>ā€‘1,2,4-Triazoline Species

    No full text
    The complex <i>trans-</i>[PtCl<sub>4</sub>(EtCN)<sub>2</sub>] (<b>14</b>) reacts smoothly at 25 Ā°C with the stable cyclic azomethine imines R<sup>1</sup>CHī—»N<sup><i>a</i></sup>NCĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­C<sup><i>b</i></sup>HĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)<sup>(<i>a</i>āˆ’<i>b</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>8</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>9</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>10</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>11</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>12</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>13</b>)], and the reaction proceeds as stereoselective 1,3-dipolar cycloaddition to one of the EtCN ligands accomplishing the <i>mono</i>cycloadducts <i>trans-</i>[PtCl<sub>4</sub>(EtCN)Ā­{N<sup><i>a</i></sup>ī—»CĀ­(Et)Ā­<i>N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1</sup>}])<sup>(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>15</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>16</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>17</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>18</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>19</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>20</b>)]. Inspection of the obtained and literature data indicate that the cycloaddition of the azomethine imines to the Cā‰”N bonds of HCN and of Pt<sup>IV</sup>-bound EtCN has different regioselectivity leading to Ī”<sup>2</sup>-1,2,3-triazolines and Ī”<sup>2</sup>-1,2,4-triazolines, respectively. PlatinumĀ­(II) species <i>trans-</i>[PtCl<sub>2</sub>(EtCN)Ā­{N<sup><i>a</i></sup>ī—»CĀ­(Et)Ā­<i>N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1</sup>}]<sup>(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>21</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>22</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>23</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>24</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>25</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>26</b>)] were obtained by a one-pot procedure from <b>14</b> and <b>8</b>ā€“<b>13</b> followed by addition of the phosphorus ylide Ph<sub>3</sub>Pī—»CHCO<sub>2</sub>Me. Ī”<sup>2</sup>-1,2,4-Triazolines N<sup><i>a</i></sup>ī—»CĀ­(Et)<i>Ā­N</i><sup><i>b</i></sup>CĀ­(O)Ā­CHĀ­(NHCĀ­(O)Ā­C<sub>6</sub>H<sub>4</sub>R<sup>3</sup>)Ā­CHĀ­(C<sub>6</sub>H<sub>4</sub>R<sup>2</sup>)Ā­<i>N</i><sup><i>c</i></sup>C<sup><i>d</i></sup>HR<sup>1(<i>aā€“d;bā€“c</i>)</sup> [R<sup>1</sup>/R<sup>2</sup>/R<sup>3</sup> = <i>p-</i>Me/H/H (<b>27</b>); <i>p-</i>Me/<i>p-</i>Me/H (<b>28</b>); <i>p-</i>Me/<i>p-</i>MeO/H (<b>29</b>); <i>p-</i>Me/<i>p-</i>Cl/<i>p-</i>Cl (<b>30</b>); <i>p-</i>MeO/<i>p-</i>Me/H (<b>31</b>); <i>p-</i>MeO/<i>p-</i>Cl/<i>m-</i>Me (<b>32</b>)] were liberated from <b>21</b>ā€“<b>26</b> by the treatment with bisĀ­(diphenylphosphyno)Ā­ethane (dppe). PlatinumĀ­(II) complexes <b>21</b>ā€“<b>26</b> were characterized by elemental analyses (C, H, N), high-resolution electrospray ionization mass spectrometry (ESI-MS), and IR and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopies and single crystal X-ray diffraction in the solid state for <b>25</b>Ā·CH<sub>3</sub>OH, <b>26</b>Ā·(CHCl<sub>3</sub>)<sub>0.84</sub>. The structure of <b>26</b> was also determined by COSY-90 and NOESY NMR methods in solution. Quantitative evaluation of several pairs of interproton distances obtained by NMR and X-ray diffraction agrees well with each other and with those obtained by the MM+ calculation method. PlatinumĀ­(IV) complexes <b>15</b>ā€“<b>20</b> were characterized by <sup>1</sup>H NMR spectroscopy. Metal-free 6,7-dihydropyrazoloĀ­[1,2-<i>a</i>]Ā­[1,2,4]Ā­triazoles (<b>27</b>ā€“<b>32</b>) were characterized by high-resolution ESI-MS and IR and <sup>1</sup>H and <sup>13</sup>CĀ­{<sup>1</sup>H} NMR spectroscopies and single crystal X-ray diffraction for <b>29</b>Ā·CDCl<sub>3</sub>. Theoretical density functional theory calculations were carried out for the investigation of the reaction mechanism, interpretation of the reactivity of Pt-bound and free nitriles toward azomethine imines and analysis of the regio- and stereoselectivity origin
    corecore