2 research outputs found

    Correlated Morphological Changes in the Volume Temperature Transition of Core–Shell Microgels

    No full text
    PVCL and PNIPMAAm core–shell components in microgel particles are shown to have different volume phase temperature transition behavior than the respective homopolymer microgel particles due to confinement effects. A combination of dynamic light scattering (DLS) data that gives access to the temperature dependence of hydrodynamic radius and modified Flory–Rehner theory in the presence of networks confinement allowed obtaining information about correlated morphological changes of components inside of core–shell microgels. The core–shell components individual temperature behavior is analyzed by modifying the Flory–Rehner transition theory in order to account for core–shell morphology and the existence of an interaction force between core and shell. Describing the dependence on temperature of the radial scale parameter, the ratio between the radius of the core and the hydrodynamic radius, we gain access to the swelling behavior of the core and shell components irrespective of the swelling behavior of the total hydrodynamic radius. Furthermore, the theoretical description of volume phase temperature transition permits the development of scenarios for the correlated changes in the core and shell radial dimensions for the two microgels with reversed morphologies. The fact that the theoretical model is appropriate for the treatment of core–shell microgels is proved <i>a posteriori</i> by obtaining a temperature dependence of the components that is in accordance with the expected physical behavior. Novel core–shell microgel systems of PVCL (poly­(<i>N</i>-vinylcaprolactam))-core/PNIPMAAm (poly­(<i>N</i>-isopropylmethacrylamide))-shell and PNIPMAAm-core/PVCL-shell, with a double volume phase temperature transition due to the thermoresponsive components, were used for this study

    Monitoring the Internal Structure of Poly(<i>N</i>‑vinylcaprolactam) Microgels with Variable Cross-Link Concentration

    No full text
    The combination of a set of complementary techniques allows us to construct an unprecedented and comprehensive picture of the internal structure, temperature dependent swelling behavior, and the dependence of these properties on the cross-linker concentration of microgel particles based on <i>N</i>-vinylcaprolactam (VCL). The microgels were synthesized by precipitation polymerization using different amounts of cross-linking agent. Characterization was performed by small-angle neutron scattering (SANS) using two complementary neutron instruments to cover a uniquely broad Q-range with one probe. Additionally we used dynamic light scattering (DLS), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). Previously obtained nuclear magnetic resonance spectroscopy (NMR) results on the same PVCL particles are utilized to round the picture off. Our study shows that both the particle radius and the cross-link density and therefore also the stiffness of the microgels rises with increasing cross-linker content. Hence, more cross-linker reduces the swelling capability distinctly. These findings are supported by SANS and AFM measurements. Independent DLS experiments also found the increase in particle size but suggest an unchanged cross-link density. The reason for the apparent contradiction is the indirect extraction of the parameters via a model in the evaluation of DLS measurements. The more direct approach in AFM by evaluating the cross section profiles of observed microgel particles gives evidence of significantly softer and more deformable particles at lower cross-linker concentrations and therefore verifies the change in cross-link density. DSC data indicate a minor but unexpected shift of the volume phase transition temperature (VPTT) to higher temperatures and exposes a more heterogeneous internal structure of the microgels with increasing cross-link density. Moreover, a change in the total energy transfer during the VPT gives evidence that the strength of hydrogen bonds is significantly affected by the cross-link density. A strong and reproducible deviation of the material density of the cross-linked microgel polymer chains toward a higher value compared to the respective linear chains has yet to be explained
    corecore