5 research outputs found

    Neural Processing of Respiratory Sensations when Breathing Becomes More Difficult and Unpleasant

    Get PDF
    The accurate perception of respiratory sensations is important for the successful management and treatment of respiratory diseases. Previous studies demonstrated that external stimuli such as affective pictures and distracting films can impact the perception and neural processing of respiratory sensations. This study examined the neural processing of respiratory sensations when breathing as an internal stimulus is manipulated and becomes more difficult and unpleasant. Sustained breathing through an inspiratory resistive load was used to increase perceived breathing difficulty in 12 female individuals without respiratory disease. Using high-density EEG, respiratory-related evoked potentials (RREP) to short inspiratory occlusions were recorded at early versus late time points of sustained loaded breathing. Ratings of perceived intensity and unpleasantness of breathing difficulty showed an increase from early to late time points of loaded breathing (p < 0.01 and p < 0.05, respectively). This was paralleled by significant increases in the magnitudes of RREP components N1, P2, and P3 (p < 0.01, p < 0.05, and p < 0.05, respectively). The present results demonstrate increases in the neural processing of respiratory sensations when breathing becomes more difficult and unpleasant. This might reflect a protective neural mechanism allowing effective response behavior when air supply is at risk

    Interoception and the uneasiness of the mind: affect as perceptual style

    No full text
    Autonomous system models of interoception describe perception as an active process in which the brain generates and tests hypotheses about the body on the basis of proximal information. This view of perception as inference allows a new perspective on the role of affect in perception. Affect and interoception are closely linked, but processes underlying this link are poorly understood. We suggest that a predictive coding perspective allows acknowledging affect as integral part of information processing. We outline how affect may intrinsically modify processes of interoception by acting as threshold mechanism in stimulus grouping and information compression. We outline how well-established methods, for example, from categorization research may allow quantifying this influence of affect on perception in empirical tests of predictive coding models. We discuss how this may enrich the study of the relationship between affect and interoception and may have important clinical relevance

    Respiratory Sensory Gating measured by Respiratory-Related Evoked Potentials in Generalized Anxiety Disorder

    No full text
    The perception of respiratory sensations plays an important role both in respiratory diseases and in anxiety disorders. However, little is known about the neural processes underlying respiratory sensory perception, especially in patient groups. Therefore, the present study examined whether patients with generalized anxiety disorder (GAD) would demonstrate altered respiratory sensory gating compared to a healthy control group. Respiratory-related evoked potentials (RREP) were measured in a paired inspiratory occlusion paradigm presenting two brief occlusion stimuli (S1 and S2) within one inspiration. The results showed a significantly greater S2/S1 ratio for the N1 component of the RREP in the GAD group compared to the control group. Our findings suggest altered respiratory sensory processing in patients with GAD, which might contribute to altered perception of respiratory sensations in these patients

    Interoception and symptom reporting: Disentangling accuracy and bias.

    Get PDF
    Anxiety and anxiety sensitivity are positively related to accuracy in the perception of bodily sensations. At the same time, research consistently reports that these traits are positively related to bias, resulting in the report of more and more intense symptoms that poorly correspond with physiological dysfunction. The aim of this study was to test the relationship of accuracy and bias in interoception. Furthermore, we tested the impact of individual differences in negative affect and symptom report in daily life on interoceptive accuracy and bias.Individuals higher in symptom report in daily life and negative affect were marginally more accurate in an interoceptive classification task in which participants were asked to identify different respiratory stimuli (inducing breathing effort) as belonging to a high or low intensity category. At the same time, bias in overestimating intensity of stimuli was significantly increased in participants higher in symptom report and negative affect, but only for more ambiguous stimuli. Results illustrate that interoceptive accuracy and bias need to be considered independently to understand their interaction with psychological factors and to disentangle (mis)perception of bodily sensations from liberal or conservative perceptual decision strategies

    Being anxious, thinking positively: The Effect of Emotional Context on Respiratory Sensory Gating

    No full text
    Respiratory sensory gating function has been found decreased by induced negative emotion in healthy adults. The increased ratio of the respiratory-related evoked potential (RREP) N1 peak amplitude for the second occlusion (S2) versus the first occlusion (S1), S2/S1, is indicative of such decreased respiratory sensory gating. In this study, we tested the hypothesis that a positive emotional context would enhance respiratory sensory gating function in healthy individuals. In addition, we tested the modulating role of individual anxiety levels. We compared respiratory sensory gating in 40 healthy individuals by the paired inspiratory occlusion paradigm in a positive and neutral emotional context induced by emotional picture viewing. The results showed that the group averaged RREP N1 peak amplitudes S2/S1 ratios were significantly smaller in the positive compared to neutral context (0.49 vs. 0.64; p < .01). Further analysis showed that the ratio decrease was due to a reduced response to the S2 and an enhanced response to S1 in the positive emotional context (p < .05). The subgroup analyses showed that in the positive emotional context, both individuals with low-moderate anxiety levels and those with no anxiety demonstrated a significant decrease of their S2/S1 ratio, but only those with low-moderate anxiety levels showed reduced S2 amplitudes compared to the neutral context (p < .01). In conclusion, our results suggest that a positive emotional context is related to better brain inhibitory mechanisms by filtering out repetitive respiratory stimuli in healthy individuals, especially in the presence of low-moderate anxiety levels. Further investigation on how positive emotional contexts might contribute to improved respiratory sensory gating ability in clinical populations is necessary
    corecore