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Anxiety and anxiety sensitivity are positively related to accuracy in the perception of
bodily sensations. At the same time, research consistently reports that these traits are
positively related to bias, resulting in the report of more and more intense symptoms that
poorly correspond with physiological dysfunction. The aim of this study was to test the
relationship of accuracy and bias in interoception. Furthermore, we tested the impact of
individual differences in negative affect and symptom report in daily life on interoceptive
accuracy and bias. Individuals higher in symptom report in daily life and negative
affect were marginally more accurate in an interoceptive classification task in which
participants were asked to identify different respiratory stimuli (inducing breathing effort)
as belonging to a high or low intensity category. At the same time, bias in overestimating
intensity of stimuli was significantly increased in participants higher in symptom report
and negative affect, but only for more ambiguous stimuli. Results illustrate that
interoceptive accuracy and bias need to be considered independently to understand
their interaction with psychological factors and to disentangle (mis)perception of bodily
sensations from liberal or conservative perceptual decision strategies.

Keywords: classification, interoception, bias, accuracy, decision strategies, sensitivity, negative affect, symptom
report

Introduction

Nothing is closer to us than our own body but few things seem so elusive than the perception of
bodily sensations. The brain is not passively ‘measuring’ signals from the body, but these signals
interact with emotions and influence decision-making, behavior, and attention which in turn can
change (perception of) bodily signals (Damasio, 1994; Craig, 2004). It is thus little surprising that
correlations between self-reported bodily sensations and physiological changes are usually low in
healthy individuals and in patients with somatic disease (e.g., Banzett et al., 2000; Petersen et al.,
2011). Research consistently reports that negative affect, anxiety, and anxiety sensitivity are related
to stronger nocebo effects (Van den Bergh et al., 1997, 2004) and higher levels of symptom report
(Watson and Pennebaker, 1989; Petersen et al., 2011). Furthermore, in anxiety disorders, elevated
self-report of somatic sensations is combined with a tendency for catastrophizing interpretations
(e.g., Barlow, 1988; Barsky et al., 1994; Carleton et al., 2014).

In contrast to these low correlations between self-report and physiology particularly in
individuals high in negative affect, a meta-analysis reports medium to strong effect sizes for a
positive relationship between accuracy in heartbeat detection and psychological variables such as
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anxiety sensitivity and anxiety (Domschke et al., 2010). Higher
anxiety sensitivity is also related to lower detection thresholds
for respiratory stimuli (Petersen and Ritz, 2011). Furthermore,
a study measuring respiratory-related evoked potentials (RREPs)
in participants watching negative emotional pictures found
increased later components of RREPs in individuals higher
compared to lower in anxiety (von Leupoldt et al., 2011).
The authors interpreted these increases as higher motivated
attention toward respiratory signals in more anxious individuals
in negative affective contexts.

Thus, while individuals higher in negative affective states and
traits seem to be more biased in interoception, they seem at
the same time to be more accurate. Attempts to reconcile these
seemingly paradox findings are faced with a methodological
challenge. Research on interoceptive accuracy uses mostly
heartbeat detection tasks (e.g., Domschke et al., 2010). In
one type of heartbeat detection task, participants are asked to
decide whether a sound signal is matching their heartbeat (e.g.,
Asmundson et al., 1993; Harver et al., 1993). Data collected in
such a task could be used to differentiate bias and accuracy
in a signal detection approach. Unfortunately, performance
levels are around chance in the majority of participants, raising
questions about the usefulness of this paradigm (Jones, 1994;
Domschke et al., 2010). Most studies on interoception use
another type of heartbeat detection task and follow a mental
tracking paradigm in which participants are instructed to count
their heartbeats during intervals of different length (Schandry,
1981). This paradigm, however, cannot differentiate sensitivity
and bias.

Confounding sensitivity and bias means to lose crucial
information. At the same level of sensitivity, individuals can
apply liberal or conservative decision strategies which may result
in very different forms of coping behavior following either a
liberal “better safe than sorry” or a conservative “wait and see”
approach (Macmillan and Creelman, 2004; Lynn and Barrett,
2014).

Making perceptual decisions and classifying bodily sensations,
for example, as symptom or as benign sensation, is an inherent
part of interoception (Petersen et al., 2014) and may present a
challenge (Carleton et al., 2014). A headache may be painful, but
perhaps not painful enough to take medication; breathlessness
may be strong, but perhaps not strong enough to signal that we
should stop exercise; heartbeat may be elevated, but probably
not a sign of a heart disease. Although these sensations are
clearly above detection threshold they are ambiguous regarding
their category. We cannot be 100% sure about classification
of ambiguous sensations at the border of two interoceptive
categories, but we can optimize decision strategies by weighting
the risk of missing a symptom against the risk of false alarms,
that is, the risk of classifying a benign sensation as pathological
(Griffiths et al., 2008). These processes of forming probabilistic
beliefs about bodily sensations have been suggested to underlie
interoception at every stage of information processing and may
not always be deliberate or even consciously accessible (Edwards
et al., 2012).

In this study, we tested the relationship between accuracy and
bias in an interoceptive classification task in which participants

were asked to correctly categorize different respiratory stimuli
(respiratory loads increasing breathing effort) as belonging to
either a low or a high intensity category and to indicate their place
within these categories by labeling them as A1, A2, A3, A4, B1, B2,
B3, and B4, with increasing numbers being related to increasing
stimulus intensity (Petersen et al., 2014). A novel feature of this
study is that we tested classification of a number of stimuli
varying in intensity and assigned to two categories. Most signal
detection paradigms test only one (usually low intensity) stimulus
representing the signal against signal absent trials (for exceptions,
see Kepecs et al., 2008; Yang et al., 2014). Interoceptive categories,
however, usually subsume a range of different signals (e.g., signs
of airway obstruction in asthma may come in different degrees
of intensity and a variety of symptoms on multiple dimensions
may fall in the category ‘cold symptoms’) and an important task
is to classify ambiguous signals as belonging to one of various
sensation classes.

We tested accuracy in the classification of multiple stimuli
as belonging to one of two intensity categories. Furthermore,
we tested how bias changes across the different stimuli within
interoceptive categories. We expected that it would be more
challenging to classify sensations closer to the border of
two interoceptive categories than for more prototypical/central
sensations, for example, a stimulus which is not clearly high
or low, but moderate. It is important to note that also if non-
categorization information would be given, an A1 stimulus
would be more easily classified as low than an A4 stimulus.
We tested whether interoceptive bias would be higher for more
ambiguous sensations and whether individual differences in
negative affect and symptom report in daily life would affect
this bias. Higher increase in bias toward the shared category
border could be interpreted a strategy to rather risk false alarms
than to miss signals which indicated potential harm (Lynn and
Barrett, 2014). Lower increase in bias toward the category border
could be interpreted as the category border being incorporated
into interoceptive decision-making, serving as a red flag and
reducing misclassification particularly for stimuli at this category
border.

We expected that higher bias for more ambiguous stimuli
(better safe than sorry approach ignoring the category border)
would lead to more accurate results in the classification task (as
predicted by Lynn and Barrett, 2014), explaining the seeming
paradox of higher bias and higher accuracy in individuals with
negative affective expectations toward symptoms or high in
general negative affect.

Materials and Methods

Participants
Participants were 54 women (mean age 21.04 years, SD = 1.8)
without known chronic or acute disease. They were selected
based on prescreens for high and low habitual report of bodily
symptoms in daily life using the Checklist for Symptoms in Daily
Life (Wientjes and Grossman, 1994). Participants completed
this symptom checklist consisting of 39 bodily sensations (e.g.,
tingling in arms and hands, back pain, etc.) with regard to
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how often they had experienced these sensations within the last
year (scale 1 never −5 very often). The questionnaire has good
reliability (Chronbach’s alpha 0.70–0.90, Wientjes and Grossman,
1994). The pre-screen was filled in by 355 individuals and mean
score was 91.95 (SD= 18.59). We invited participants with values
in the symptom checklist of either higher than 80 or lower than
60 consecutively from this prescreen list.

Participants completed the same checklist also after the
laboratory appointment. After the task, four participants from
the high symptom reporter group did no longer reach high
values on the symptom checklist and were excluded from the
analysis. Thirteen of the participants in the low symptom report
group reached values of 61–75 on the symptom checklist after
the task (which induced symptoms), and were included in the
low symptom report group. This resulted in n = 25 for the
low symptom report group and n = 25 for the high symptom
report group. Participants signed informed consent prior to
participation. They received course credit or reimbursement
for participation. The study was approved by the local ethics
committee.

Instruments
We induced feelings of breathing effort by presenting eight
different respiratory loads using the instrument Powerbreathe
K5 (POWERbreathe International Ltd., Southam, UK). The
instrument allows gradually increasing breathing resistance at
inhalation by reducing the diameter of the breathing port. We
used the software Breathelink to program presentation of loads.
Exhalation was unrestricted. Resistances of the eight respiratory
loads were chosen to ensure that differences between adjacent
breathing loads could be distinguished by healthy volunteers,
but were similar enough to leave an uncertainty margin for
classification (7, 9, 11, 14, 18, 23, 28, and 37 cmH2O).

Participants completed the Checklist for Symptoms in
Daily Life (Wientjes and Grossman, 1994) twice during the
experimental session. Firstly, they were asked to indicate which of
the symptoms they had perceived in the last year to test whether
results of the pre-screen were reliable. Secondly, we asked them
to indicate which symptoms they had experienced during the
actual task. We used the Positive and Negative Affect Schedule
(Watson et al., 1988), a five point rating scale assessing negative
and positive affect within the last 4 weeks with ten mood related
adjectives as items for each subscale.

Protocol
At the start of the protocol, participants signed an informed
consent form giving information about the study. In the first
block of the interoceptive classification task, we presented the
eight loads in random order, each load four times for two
breaths. During presentation, the label of the load was presented
on a computer screen (label A1 together with the 6 cmH2O
load, A2 – 9 cmH2O, A3 – 11 cmH2O, A4 – 14 cmH2O,
label B1 – 18 cmH2O, B2 – 23 cmH2O, B3 – 28 cmH2O,
and B4 – 37 cmH2O). Participants were instructed that in the
following block, they would have to solve a categorization task.
They were asked to memorize the sensation and the label so
that they would be able in a second block, when loads were

presented without label, to indicate the correct category (A or
B) and the location of the stimulus within its category (1–
4). In previous studies, we found that participants are able
to distinguish and label eight different loads assigned to two
categories after this training procedure above chance level
(Petersen et al., 2014). Furthermore, in a study comparing a group
of participants receiving category information and a control
group receiving the information that stimuli were labeled with
numbers only (increasing consecutively from lowest to highest
stimulus), we found that categorization and an arbitrary category
boundary indeed change perception of interoceptive stimuli.
Differentiation between stimuli falling into the same categories
was reduced and discrimination between categories was more
pronounced in the experimental compared to the control group
(Petersen et al., 2014, Study 1). Similar results were found in
studies on visual perception using arbitrary category boundaries
in a similar paradigm (Tajfel and Wilkes, 1963; Corneille et al.,
2002), and in a study using an odor classification paradigm where
mice were trained to classify six odor stimuli as belonging to one
of two similar odor categories (Kepecs et al., 2008).

In Block 2, loads were presented again in pseudo-randomized
order with 18 presentations per load, that is, 144 load
presentations overall, with two breaths per load presentation. We
presented the loads in a way that each load was preceded at least
once by every other load to reduce the impact of order effects.
Participants were asked to classify each load by assigning the
correct labels (A1–B4). They did not receive feedback on their
performance. After Block 2, participants completed the PANAS,
the symptom checklist for symptoms last year, and the symptom
checklist for symptoms directly after the task. Finally, we asked
them to answer demographic questions on age, height, weight,
and chronic or acute disease.

Data Analysis
We used SPSS 20 for all analyses and used the SPSS syntax for c
and d’ indices proposed by Stanislaw and Todorov (1999). We
calculated d’class measures reflecting how accurate participants
were in distinguishing categories A and B. In contrast to signal
detection, classification is a choice between two types of signals
and not between signal and noise. Still, the formula is identical,
only that A or B is treated as ‘noise’ and the other category as
‘signal.’ We calculated one mean d’class index as mean of a d’Aclass
(treating A as signal and B as noise) and d’Bclass (treating B as
signal and A as noise).

Furthermore, we used signal detection analysis to calculate
classification criteria cclass. We calculated cclass = −(z(H) +
z(F))/2, with z(H) as z-transformed hit rates of rating A if a
load of Category A was presented, and z(F) as z-transformed
false alarm rates of reporting A1 if a load from B was presented.
This resulted in four cclass indices per category (cclassA1, cclassA2,
cclassA3, cclassA4, cclassB1, cclassB2, cclassB3, and cclassB4) . Thus, cclass
reflects bias, taking into account classification errors and correct
classification with c indices below zero indicating a liberal bias
and c indices above zero indicating a conservative bias.

In a classification paradigm, the meaning of the terms liberal
and conservative depends on the standard used. A tendency to
require little evidence to classify a stimulus as B is liberal in a
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“better safe than sorry” approach, if missing B is regarded to
be more costly than missing A. We calculated cclass indices in
a way that the term ‘liberal’ refers to a decision strategy that
favors classifying A as B for stimuli actually belonging to A, or
classifying B as A for stimuli actually belonging to B. In other
words, a liberal tendency in our analysis is a strategy that favors
misclassification. We expect this liberal tendency to be strongest
for more ambiguous stimuli and to become weaker for clearly
high or clearly low stimuli.

We tested in a univariate analysis of covariance (ANCOVA)
whether d’class would differ between groups of high and low
habitual symptom reporters, controlling for negative affect and
symptoms experienced during the task as covariates. In further
repeated-measures ANCOVAs we tested whether cclass values
would be significantly reduced as functions of closeness to
the shared category border between A and B. The within-
individual factor was Classification with four levels of the within-
individual factor Classification per category (cclassA1, cclassA2,
cclassA3, cclassA4/cclassB1, cclassB2, cclassB3, cclassB4). We included
Symptom Report (high/low) as between-individual variable to
test whether individuals higher in habitual symptom report
would show more liberal tendencies to assign stimuli to the
B category. Again, we included negative affect and symptoms
experienced during the task within the ANCOVA model as
covariates.

As alternative way of analysis, we performed an individual
regression slopes analysis, following the procedure described
by Pfister et al. (2013). In this analysis, we tested whether
the individual regression slopes of participants indicating a
decline toward a more liberal bias from A1 to A4 and an
increase to more conservative bias from B1 to B4 would be
steeper for participants in the High Symptom Report group.
We compared the single slopes in a one way ANCOVA with
negative affect as covariate and symptoms reported directly
after the task included as control variable. Furthermore, we
calculated the absolute value for the slopes across Categories
A and B and compared, whether steepness of slopes would
differ between A and B in a repeated-measures ANCOVA
with negative affect as covariate, controlling for symptoms
experienced during the task. Furthermore, in the supplemental
material we present data on accuracy of differentiation within
categories.

Results

Table 1 summarizes mean values across groups of high and
low symptom reporters for self-report scales. We tested group
differences in a t-test for independent groups.

Accuracy of Classification
High symptom reporters were marginally more accurate
classifying loads as A or B, main effect for Symptom Report
F(1,49) = 3.60, p = 0.064, η2

p = 0.073 (Figure 1). Effects for
negative affect and symptoms reported during the task were not
significant, Fs < 1.

Misclassifications and Response Bias
Classification bias cclass per load became less conservative toward
the shared category border between A and B in both groups, but
this decrease was significant only for Category A F(3,44) = 18.27,
p < 0.001, η2

p = 0.555, and not for Category B F(3,44) = 2.06,
p = 0.119, η2

p = 0.123 (Figure 2, statistics are reported with
the covariate Negative Affect). Please note that the lack of

FIGURE 1 | Accuracy in classifying loads as belonging to A or B. Error
bars represent standard errors of the mean.

FIGURE 2 | Cclass values calculated from z-transformed correct
identification rates of a load as A or B and z-transformed false alarm
rates. Error bars represent standard error of the mean.

TABLE 1 | Participants’ characteristics (standard deviation in parentheses).

Symptom experienced last year Negative affect Symptoms experienced during the task

Low symptom reporters 60.12∗ (SD = 7.05, range: 42–75) 16.84∗ (SD = 7.10, range: 10–34) 57.04∗ (SD = 9.24, range: 41–75)

High symptom reporters 99.88 (SD = 14.06, range: 81–138) 24.48 (SD = 7.84, range: 11–28) 78.68 (SD = 16.47, range: 41–107)

∗p < 0.001.
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significant results for Category B does not necessarily imply
that the effect for Category A was larger than for Category
B. In the next section, we report a comparison of effects with
individual slope analysis. The decrease in Category A, was
significantly stronger in high symptom reporters, interaction
Classification X Symptom Report F(3,44) = 3.97, p = 0.014,
η2
p = 0.213. This interaction was non-significant for category

B, F(3,44) = 1.65, p = 0.192, η2
p = 0.101. In other words,

across Category A, participants high in habitual symptom report
showed a more pronounced change from a conservative to
a liberal criterion than participants low in habitual symptom
report. Also after exclusion of the covariate Negative Affect
from this model, the interaction effect of Classification X
Symptom Report remained significant, F(3,44)= 3.18, p= 0.033,
η2
p = 0.175.
For Category A, the interaction of the within-individual factor

Classification with the covariate Negative Affect was marginally
significant, F(3,44) = 2.29, p = 0.092, η2

p = 0.135, but not for
Category B, F(3,46) = 2.06, p = 0.120, η2

p = 0.123. None of the
other effects was significant (all Fs < 1.18).

Post hoc tests revealed that none of the single cclass indices
differed significantly between groups regardless whether negative
affect was included in the model or not (all ps > 0.103). We
performed explorative post hoc tests with t-tests for independent
groups to test whether the cclass index for A4 indicated
indeed a liberal bias or only a less conservative bias. This
explorative t-test testing differences from zero, suggests that
only for high habitual symptom reporters, cclass for A4 was
significantly smaller than zero, that is, only in this group bias
changed significantly from conservative to liberal t(24)= −2.327,
p = 0.027.

Individual Slopes Analysis
Individual slopes analysis revealed that the shift toward a liberal
bias (as expressed in a negative slope for Category A) was
stronger in the High Symptom Report group (mean: −0.386,
SD= 0.143) compared to the Low Symptom Report group (mean:
−0.357, SD = 0.126), F(1,47) = 4.59, p = 0.037, η2

p = 0.089.
The effect of negative affect was non-significant and we report
statistics without including negative affect as covariate. For
Category B, the shift to a more conservative bias from B1 to
B4 did not differ significantly between groups of Low (mean:
0.366, SD = 0.159) and High Symptom Report (mean: 0.293,
SD = 0.184), F(1,47) = 2.34, p = 0.128, η2

p = 0.049. Comparing
the absolute value of single slopes (ignoring the direction of slope)
in a repeated-measures ANCOVA revealed that the steepness
of slope was marginally higher for Category A (mean: 0.375,
SD = 0.125) than for Category B (mean: 0.339, SD = 0.155),
main within-individual effect F(1,46) = 3.27, p = 0.077,
η2
p = 0.065. The interaction with the between-individual factor

Symptom Report was significant, F(1,47) = 4.64, p = 0.036,
η2
p = 0.090. While for participants from the Low Symptom

Report group the absolute amount of slopes for Category A
(mean: 0.357, SD = 0.126) and B (mean: 0.366, SD = 0.158)
were not significantly different (p = 0.828), the absolute
amount of slopes differed significantly for the High Symptom
Report group between Category A (mean: 0.392, SD = 0.125)

and B (mean: 0.311, SD = 0.150) with a steeper slope for
Category A. In other words, change in bias across categories
was stronger for category A than for Category B, but only in
the High Symptom Report group. Again negative affect had
no significant effect and including it did not change patterns
of significance and we report results without including this
covariate.

Correlations between Bias and Accuracy
Correlations (Pearson’s correlation coefficient, two-tailed,
Figure 3) between d’class and cclass were negative for category
A, but significant for stimulus A4 only. In other words, higher
accuracy was related to a more liberal decision criterion for
the stimulus at the category border of A. This ‘better safe than
sorry’ approach for this particularly ambiguous stimulus was
related to overall better classification results. Furthermore, d’class
was significantly positively related to cclass for stimulus B1 and
B2, that is, higher accuracy was related to a more conservative
decision criterion (being reluctant to decide that stimuli B1 and
B2 belonged to A) for stimuli at the border of category B. None
of the other correlations was significant, p > 0.053.

Discussion

Participants higher in symptom report in daily life scored higher
on negative affect and reported more symptoms during the
experimental task. They were also marginally more accurate
in the interoceptive classification task. This is consistent
with results of prior research showing a relationship between
interoceptive accuracy/awareness and negative affective traits
and states (e.g., Domschke et al., 2010; Petersen et al., 2011;
von Leupoldt et al., 2011). A novel finding of this study
is that classification strategies changed across categories. Bias
became more liberal with increasing closeness to the border
between categories. This change from conservative to more
liberal decision strategies was significantly stronger in high
symptom reporters and positively related to classification
sensitivity d’class. Furthermore, for Category A (but not for B),
the decline of individual slopes was steeper in the High compared

FIGURE 3 | Correlation coefficients between cclass indices and d’class

(∗∗p < 0.01).
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to the Low Symptom Report group. Thus, the information
that there was a category border between A4 and B1 was
effectively reducing bias toward the category border, but only in
participants who did not have strong affective expectations about
stimuli.

Results confirm hypotheses proposed recently in signal
detection research. Lynn and Barrett (2014) have suggested that
increased uncertainty about visual stimuli will lead to more
extreme decision strategies in signal detection tasks. These more
extreme strategies for more ambiguous stimuli are suggested
to optimize decision-making and behavior (Lynn et al., 2012).
Lynn and Barrett (2014) give the example of a person who
walks more carefully in a dimly lit room compared to a
brightly lit room (i.e., under higher or lower ambiguity of
visual signals). Optimizing speed relative to sight allows avoiding
injury or breaking objects. They suggest that “extreme bias may
reflect not an impairment, but a normal adaptive mechanism
that offsets the single impairment, poor sensitivity” (Lynn and
Barrett, 2014, p. 1670). Calibrating bias to increased uncertainty
for ambiguous sensations (closer to category borders) may be
highly adaptive. More extreme decision strategies under higher
ambiguity (closeness to category borders) were more successful
in the present study. Higher classification accuracy (d’class) was
related to more bias at the borders of categories and increased
bias in this laboratory task was related to bias in symptom report
in daily life.

It is important to note that the border of the two neutrally
labeled categories A and B was not intrinsically meaningful,
as it would be the case for a border that marks a transition
between a sensation and a symptom category (e.g., increased
airway resistance which is either benign or indicates an
oncoming asthma attack). It could be questioned whether
arbitrary category boundaries as such affected perception.
Prior research using a design with an experimental group
receiving category information and a control group for which
stimuli were numbered consecutively from lowest to highest
without categories has found that arbitrary category boundaries
between categories A and B affect interoception (Petersen
et al., 2014, Study 1). Differentiation between categories was
increased compared to differentiation within categories in the
experimental group (receiving category information) compared
to differentiation between identical stimuli in control groups
(not receiving category information). Similar effects have also
been found for visual perception (e.g., Tajfel and Wilkes, 1963;
Corneille et al., 2002). Furthermore, a study testing classification
decisions in mice which were trained to classify six odor stimuli
as belonging to two categories (which shared a boundary and
for which similarity between stimulus A3 and B1 was the
same as between A3 and A2) found that detection of higher
ambiguity for stimuli closer to category boundaries does not
require meta-cognition and that ambiguity determines speed
of decisions, overall accuracy, and is correlated with prefrontal
cortex activity (Kepecs et al., 2008). For meaningful category
labels and borders, or a paradigm which would trigger meta-
cognition in participants about the costs of misclassifying stimuli,
results might be even stronger than observed in this minimal
paradigm using neutral labels.

It is tempting to speculate that the observed increasingly
liberal bias for ambiguous stimuli at category borders in high
symptom reporters may be a first step toward interoceptive
threat-generalization. If a stimulus at a category border is
consistently misclassified as belonging to amore intense category,
this may lead in the long run to establishing a new and lower
category border. This process may continue until more and
more stimuli, which were initially in a low (or “safe sensation”)
category, are subsumed in a higher (or “dangerous symptom”)
category. Following this lead, fear-generalization in anxiety
disorders (Lissek et al., 2008) may be interpreted as increasingly
more liberal strategies spreading from category borders to more
and more stimuli within a category.

Ambiguity of sensations because of their location close to
a category border and their no longer clearly low or clearly
high magnitude may be clinically as relevant as ambiguity
related to a poor signal to noise ratio of sensations (i.e.,
minimal stimulation such as heartbeat at rest). Research on the
role of uncertainty in panic disorder found that intolerance
of uncertainty was substantially and significantly related to
symptom report in panic disorder even after controlling
for anxiety sensitivity (Carleton et al., 2014). Results from
this correlation study suggest that patients seemed to find
uncertainty about the decision whether a clearly detectable
sensation is a sign of pathology (or not) at least as aversive
as the sensation as such. Probing deeper into interoceptive
classification strategies in anxiety disorder, future research should
test whether the relationship of negative affective states and
traits and interoceptive accuracy and bias is mediated by
increased feelings of aversiveness related to uncertainty about
classification of sensations as pathological or benign. Trait
constructs such as intolerance for ambiguity which are closely
related to anxiety may be interesting in that regard (Birrell et al.,
2011).

Negative affect was increased in individuals high in habitual
symptom report. Negative affect has been suggested to be
related to a general lack of inhibition and not specifically to
interoception (Bogaerts et al., 2015), but again, our results suggest
that this effect is not a general effect across all types of stimuli
within a category, but higher for more ambiguous stimuli. The
relationship between negative affect and perceptual bias has been
confirmed in a large number of studies (e.g., Bar-Haim et al.,
2007; Cisler and Koster, 2010), but testing decision strategies
under uncertainty may help to shed light on the processes
underlying this relationship.

A limitation for generalization of the present results
is that categories were distinct and defined only by one
dimension (inspiratory resistance). Interoceptive categories are
multidimensional and may overlap on some dimensions and
be distinct on others. Sensations experienced during an asthma
attack, for example, and sensations related to panic attacks
belong to two distinct diagnostic categories, but are partly
overlapping in how they are experienced by patients (Lehrer
et al., 2002). Multidimensionality and overlap of categories in
interoception may increase ambiguity of sensations, which in
turn may lead to more extreme forms of bias for ambiguous
sensations.
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A further important limitation of this study is that we included
only young female participants. Attention to interoceptive
stimuli as well as expression of negative affect and fear
may be higher in women than in men. Future research
needs to address gender and age differences in interoceptive
classification.

Conclusion

The relationship between sensitivity and bias is not uniform
across interoceptive categories. To understand the relationship
between interoception and individual difference variables,
paradigms are needed which do not confound sensitivity and bias
and vary the degree of ambiguity stimuli have regarding their
classification.
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