29,862 research outputs found
Passive scalar intermittency in low temperature helium flows
We report new measurements of turbulent mixing of temperature fluctuations in
a low temperature helium gas experiment, spanning a range of microscale
Reynolds number, , from 100 to 650. The exponents of the
temperature structure functions
are shown to saturate to for the highest
orders, . This saturation is a signature of statistics dominated by
front-like structures, the cliffs. Statistics of the cliff characteristics are
performed, particularly their width are shown to scale as the Kolmogorov length
scale.Comment: 4 pages, with 4 figure
Multiple and variable speed electrical generator systems for large wind turbines
A cost effective method to achieve increased wind turbine generator energy conversion and other operational benefits through variable speed operation is presented. Earlier studies of multiple and variable speed generators in wind turbines were extended for evaluation in the context of a specific large sized conceptual design. System design and simulation have defined the costs and performance benefits which can be expected from both two speed and variable speed configurations
Antiferromagnetic correlations and impurity broadening of NMR linewidths in cuprate superconductors
We study a model of a d-wave superconductor with strong potential scatterers
in the presence of antiferromagnetic correlations and apply it to experimental
nuclear magnetic resonance (NMR) results on Zn impurities in the
superconducting state of YBCO. We then focus on the contribution of
impurity-induced paramagnetic moments, with Hubbard correlations in the host
system accounted for in Hartree approximation. We show that local magnetism
around individual impurities broadens the line, but quasiparticle interference
between impurity states plays an important role in smearing out impurity
satellite peaks. The model, together with estimates of vortex lattice effects,
provides a semi-quantitative description of the impurity concentration
dependence of the NMR line shape in the superconducting state, and gives a
qualitative description of the temperature dependence of the line asymmetry. We
argue that impurity-induced paramagnetism and resonant local density of states
effects are both necessary to explain existing experiments.Comment: 15 pages, 23 figures, submitted to Phys. Rev.
Extinction of impurity resonances in large-gap regions of inhomogeneous d-wave superconductors
Impurity resonances observed by scanning tunneling spectroscopy in the
superconducting state have been used to deduce properties of the underlying
pure state. Here we study a longstanding puzzle associated with these
measurements, the apparent extinction of these resonances for Ni and Zn
impurities in large-gap regions of the inhomogeneous BSCCO superconductor. We
calculate the effect of order parameter and hopping suppression near the
impurity site, and find that these two effects are sufficient to explain the
missing resonances in the case of Ni. There are several possible scenarios for
the extinction of the Zn resonances, which we discuss in turn; in addition, we
propose measurements which could distinguish among them.Comment: 10 pages, 8 figure
Coupled Magnetic Excitations in Single Crystal PrBa2Cu3O6.2
The dispersion of the low-energy magnetic excitations of the Pr sublattice in
PrBa2Cu3O6.2 is determined by inelastic neutron scattering measurements on a
single crystal. The dispersion, which shows the effect of interactions with the
Cu spin-waves, is well described by a model of the coupled Cu-Pr magnetic
system. This enables values for the principal exchange constants to be
determined, which suggest that both Pr-Pr and Cu-Pr interactions are important
in producing the anomalously high ordering temperature of the Pr sublattice.
Measurements of the Cu optic spin wave mode show that the inter-layer Cu-Cu
exchange is significantly lower than in YBa2Cu3O6.2.Comment: To be published Phys. Rev. Let
Investigating 16O with the 15N(p,{\alpha})12C reaction
The 16O nucleus was investigated through the 15N(p,{\alpha})12C reaction at
excitation energies from Ex = 12 231 to 15 700 keV using proton beams from a 5
MeV Van de Graaff accelerator at beam energies of Ep = 331 to 3800 keV. Alpha
decay from resonant states in 16O was strongly observed for ten known excited
states in this region. The candidate 4-alpha cluster state at Ex = 15.1 MeV was
investigated particularly intensely in order to understand its particle decay
channels.Comment: Submitted for Proceedings of Fourth International Workshop on State
of the Art in Nuclear Cluster Physics (SOTANCP4), held from May 13 - 18, 2018
in Galveston, TX, US
Mass Expansions of Screened Perturbation Theory
The thermodynamics of massless phi^4-theory is studied within screened
perturbation theory (SPT). In this method the perturbative expansion is
reorganized by adding and subtracting a mass term in the Lagrangian. We
analytically calculate the pressure and entropy to three-loop order and the
screening mass to two-loop order, expanding in powers of m/T. The truncated
m/T-expansion results are compared with numerical SPT results for the pressure,
entropy and screening mass which are accurate to all orders in m/T. It is shown
that the m/T-expansion converges quickly and provides an accurate description
of the thermodynamic functions for large values of the coupling constant.Comment: 22 pages, 10 figure
Phase transition in a spring-block model of surface fracture
A simple and robust spring-block model obeying threshold dynamics is
introduced to study surface fracture of an overlayer subject to stress induced
by adhesion to a substrate. We find a novel phase transition in the crack
morphology and fragment-size statistics when the strain and the substrate
coupling are varied. Across the transition, the cracks display in succession
short-range, power-law and long-range correlations. The study of stress release
prior to cracking yields useful information on the cracking process.Comment: RevTeX, 4 pages, 4 Postscript figures included using epsfi
Pea-barley intercrop N dynamics in farmers fields
Knowledge about crop performances in farmers’ fields provides a link between on-farm practice and re-search. Thereby scientists may improve their ability to understand and suggest solutions for the problems facing those who have the responsibility of making sound agricultural decisions.
Nitrogen (N) availability is known to be highly heterogeneous in terrestrial plant communities (Stevenson and van Kessel, 1997), a heterogeneity that in natural systems is often associated with variation in the distri-bution of plant species. In intercropping systems the relative proportion of component crops is influenced by the distribution of growth factors such as N in both time and space (Jensen, 1996). In pea-barley intercrops, an increase in the N supply promotes the growth of barley thereby decreasing the N accumulation of pea and giving rise to changes in the relative proportions of the intercropped components (Jensen, 1996). The pres-sure of weeds may, however, significantly change the dynamics in intercrops (Hauggaard-Nielsen et al., 2001). Data from farmers’ fields may provide direct, spatially explicit information for evaluating the poten-tials of improving the utilisation of field variability by intercrops
Out-of-plane instability and electron-phonon contribution to s- and d-wave pairing in high-temperature superconductors; LDA linear-response calculation for doped CaCuO2 and a generic tight-binding model
The equilibrium structure, energy bands, phonon dispersions, and s- and
d-channel electron-phonon interactions (EPIs) are calculated for the
infinite-layer superconductor CaCuO2 doped with 0.24 holes per CuO2. The LDA
and the linear-response full-potential LMTO method were used. In the
equilibrium structure, oxygen is found to buckle slightly out of the plane and,
as a result, the characters of the energy bands near EF are found to be similar
to those of other optimally doped HTSCs. For the EPI we find lambda(s)=0.4, in
accord with previous LDA calculations for YBa2Cu3O7. This supports the common
belief that the EPI mechanism alone is insufficient to explain HTSC.
Lambda(x^2-y^2) is found to be positive and nearly as large as lambda(s). This
is surprising and indicates that the EPI could enhance some other d-wave
pairing mechanism. Like in YBa2Cu3O7, the buckling modes contribute
significantly to the EPI, although these contributions are proportional to the
static buckling and would vanish for flat planes. These numerical results can
be understood from a generic tight-binding model originally derived from the
LDA bands of YBa2Cu3O7. In the future, the role of anharmonicity of the
buckling-modes and the influence of the spin-fluctuations should be
investigated.Comment: 19 pages, 9 Postscript figures, Late
- …