16,484 research outputs found
Enumeration of chord diagrams on many intervals and their non-orientable analogs
Two types of connected chord diagrams with chord endpoints lying in a
collection of ordered and oriented real segments are considered here: the real
segments may contain additional bivalent vertices in one model but not in the
other. In the former case, we record in a generating function the number of
fatgraph boundary cycles containing a fixed number of bivalent vertices while
in the latter, we instead record the number of boundary cycles of each fixed
length. Second order, non-linear, algebraic partial differential equations are
derived which are satisfied by these generating functions in each case giving
efficient enumerative schemes. Moreover, these generating functions provide
multi-parameter families of solutions to the KP hierarchy. For each model,
there is furthermore a non-orientable analog, and each such model likewise has
its own associated differential equation. The enumerative problems we solve are
interpreted in terms of certain polygon gluings. As specific applications, we
discuss models of several interacting RNA molecules. We also study a matrix
integral which computes numbers of chord diagrams in both orientable and
non-orientable cases in the model with bivalent vertices, and the large-N limit
is computed using techniques of free probability.Comment: 23 pages, 7 figures; revised and extended versio
Interdependence of magnetism and superconductivity in the borocarbide TmNi2B2C
We have discovered a new antiferromagnetic phase in TmNi2B2C by neutron
diffraction. The ordering vector is Q_A = (0.48,0,0) and the phase appears
above a critical in-plane magnetic field of 0.9 T. The field was applied in
order to test the assumption that the zero-field magnetic structure at Q_F =
(0.094,0.094,0) would change into a c-axis ferromagnet if superconductivity
were destroyed. We present theoretical calculations which show that two effects
are important: A suppression of the ferromagnetic component of the RKKY
exchange interaction in the superconducting phase, and a reduction of the
superconducting condensation energy due to the periodic modulation of the
moments at the wave vector Q_A
Competing Ordered Phases in URu2Si2: Hydrostatic Pressure and Re-substitution
A persistent kink in the pressure dependence of the \hidden order" (HO)
transition temperature of URu2-xRexSi2 is observed at a critical pressure Pc=15
kbar for 0 < x < 0.08. In URu2Si2, the kink at Pc is accompanied by the
destruction of superconductivity; a change in the magnitude of a spin
excitation gap, determined from electrical resistivity measurements; and a
complete gapping of a portion of the Fermi surface (FS), inferred from a change
in scattering and the competition between the HO state and superconductivity
for FS fraction
Detecting and Characterizing Small Dense Bipartite-like Subgraphs by the Bipartiteness Ratio Measure
We study the problem of finding and characterizing subgraphs with small
\textit{bipartiteness ratio}. We give a bicriteria approximation algorithm
\verb|SwpDB| such that if there exists a subset of volume at most and
bipartiteness ratio , then for any , it finds a set
of volume at most and bipartiteness ratio at most
. By combining a truncation operation, we give a local
algorithm \verb|LocDB|, which has asymptotically the same approximation
guarantee as the algorithm \verb|SwpDB| on both the volume and bipartiteness
ratio of the output set, and runs in time
, independent of the size of the
graph. Finally, we give a spectral characterization of the small dense
bipartite-like subgraphs by using the th \textit{largest} eigenvalue of the
Laplacian of the graph.Comment: 17 pages; ISAAC 201
Experimental investigation of the Landau-Pomeranchuk-Migdal effect in low-Z targets
In the CERN NA63 collaboration we have addressed the question of the
potential inadequacy of the commonly used Migdal formulation of the
Landau-Pomeranchuk-Migdal (LPM) effect by measuring the photon emission by 20
and 178 GeV electrons in the range 100 MeV - 4 GeV, in targets of
LowDensityPolyEthylene (LDPE), C, Al, Ti, Fe, Cu, Mo and, as a reference
target, Ta. For each target and energy, a comparison between simulated values
based on the LPM suppression of incoherent bremsstrahlung is shown, taking
multi-photon effects into account. For these targets and energies, we find that
Migdal's theoretical formulation is adequate to a precision of better than
about 5%, irrespective of the target substance.Comment: 8 pages, 13 figure
Band structure approach to the resonant x-ray scattering
We study the resonance behaviour of the forbidden 600 and 222 x-ray Bragg
peaks in Ge using LDA band structure methods. These Bragg peaks remain
forbidden in the resonant dipole scattering approximation even taking into
account the non local nature of the band states. However they become allowed at
resonance if the eigenstates of the unoccupied conduction band involve a
hybridization of p like and d like atomic states. We show that the energy
dependence of the resonant behaviour, including the phase of the scattering, is
a direct measure of this p-d hybridization.and obtain quantitative agreement
with experiment. A simple physical picture involving a product of dipole and
quadrupolar transition matrix elements explains this behaviour and shows that
it should be generally true for cases where the resonating atom is not at an
inversion center. This has strong implications for the description of the
resonance behavior of x-ray scattering in materials where the resonant atom is
not at an inversion center such as V2O3 and in ferro and antiferro electric and
piezo electric materials in general.Comment: 4 pages, 5figure
Modeling rhythmic patterns in the hippocampus
We investigate different dynamical regimes of neuronal network in the CA3
area of the hippocampus. The proposed neuronal circuit includes two fast- and
two slowly-spiking cells which are interconnected by means of dynamical
synapses. On the individual level, each neuron is modeled by FitzHugh-Nagumo
equations. Three basic rhythmic patterns are observed: gamma-rhythm in which
the fast neurons are uniformly spiking, theta-rhythm in which the individual
spikes are separated by quiet epochs, and theta/gamma rhythm with repeated
patches of spikes. We analyze the influence of asymmetry of synaptic strengths
on the synchronization in the network and demonstrate that strong asymmetry
reduces the variety of available dynamical states. The model network exhibits
multistability; this results in occurrence of hysteresis in dependence on the
conductances of individual connections. We show that switching between
different rhythmic patterns in the network depends on the degree of
synchronization between the slow cells.Comment: 10 pages, 9 figure
Fast recovery of the stripe magnetic order by Mn/Fe substitution in F-doped LaFeAsO superconductors
As Nuclear Magnetic (NMR) and Quadrupolar (NQR) Resonance were used,
together with M\"{o}ssbauer spectroscopy, to investigate the magnetic state
induced by Mn for Fe substitutions in F-doped LaFeMnAsO
superconductors. The results show that % of Mn doping is enough to
suppress the superconducting transition temperature from 27 K to zero and
to recover the magnetic structure observed in the parent undoped LaFeAsO. Also
the tetragonal to orthorhombic transition of the parent compound is recovered
by introducing Mn, as evidenced by a sharp drop of the NQR frequency. The NQR
spectra also show that a charge localization process is at play in the system.
Theoretical calculations using a realistic five-band model show that
correlation-enhanced RKKY exchange interactions between nearby Mn ions
stabilize the observed magnetic order, dominated by and
ordering vectors. These results give compelling evidence that
F-doped LaFeAsO is a strongly correlated electron system at the verge of an
electronic instability.Comment: 5 pages, 5 figures and 4 pages of supplemental materia
- …