1,275 research outputs found
The Nordic Optical Telescope
An overview of the Nordic Optical Telescope (NOT) is presented. Emphasis is
on current capabilities of direct interest to the scientific user community,
including instruments. Educational services and prospects and strategies for
the future are discussed briefly as well.Comment: 8 pages, 3 figures, 1 table, Invited talk, To appear in the
proceedings "Highlights of Spanish Astrophysics V " Proceedings of the VIII
Scientific Meeting of the Spanish Astronomical Society (SEA) held in
Santander, July 7-11, 200
Theoretical study of impurity-induced magnetism in FeSe
Experimental evidence suggests that FeSe is close to a magnetic instability,
and recent scanning tunneling microscopy (STM) measurements on FeSe multilayer
films have revealed stripe order locally pinned near defect sites. Motivated by
these findings, we perform a theoretical study of locally induced magnetic
order near nonmagnetic impurities in a model relevant for FeSe. We find that
relatively weak repulsive impurities indeed are capable of generating
short-range magnetism, and explain the driving mechanism for the local order by
resonant eg-orbital states. In addition, we investigate the importance of
orbital-selective self-energy effects relevant for Hund's metals, and show how
the structure of the induced magnetization cloud gets modified by orbital
selectivity. Finally, we make concrete connection to STM measurements of
iron-based superconductors by symmetry arguments of the induced magnetic order,
and the basic properties of the Fe Wannier functions relevant for tunneling
spectroscopy.Comment: 10 pages, 4 figure
The origin of a and e' orderings in NaCoO
It has often been suggested that correlation effects suppress the small e_g'
Fermi surface pockets of NaxCoO_2 that are predicted by LDA, but absent in
ARPES measurements. It appears that within the dynamical mean field theory
(DMFT) the ARPES can be reproduced only if the on-site energy of the eg'
complex is lower than that of the a1g complex at the one-electron level, prior
to the addition of local correlation effects. Current estimates regarding the
order of the two orbital complexes range from -200 meV to 315 meV in therms of
the energy difference. In this work, we perform density functional theory
calculations of this one-electron splitting \Delta= \epsilon_a1g-\epsilon_e_g'
for the full two-layer compound, Na2xCo2O4, accounting for the effects of Na
ordering, interplanar interactions and octahedral distortion. We find that
\epsilon a_1g-\epsilon e_g' is negative for all Na fillings and that this is
primarily due to the strongly positive Coulomb field created by Na+ ions in the
intercalant plane. This field disproportionately affects the a_1g orbital which
protrudes farther upward from the Co plane than the e_g' orbitals. We discuss
also the secondary effects of octahedral compression and multi-orbital filling
on the value of \Delta as a function of Na content. Our results indicate that
if the e_g' pockets are indeed suppressed that can only be due to nonlocal
correlation effects beyond the standard DMFT.Comment: 4 pages, 3 figure
Super sensitivity and super resolution with quantum teleportation
We propose a method for quantum enhanced phase estimation based on continuous
variable (CV) quantum teleportation. The phase shift probed by a coherent state
can be enhanced by repeatedly teleporting the state back to interact with the
phase shift again using a supply of two-mode squeezed vacuum states. In this
way, both super resolution and super sensitivity can be obtained due to the
coherent addition of the phase shift. The protocol enables Heisenberg limited
sensitivity and super- resolution given sufficiently strong squeezing. The
proposed method could be implemented with current or near-term technology of CV
teleportation.Comment: 5 pagers, 3 figure
The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance
Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance
Robustness of Quasiparticle Interference Test for Sign-changing Gaps in Multiband Superconductors
Recently, a test for a sign-changing gap function in a candidate multiband
unconventional superconductor involving quasiparticle interference data was
proposed. The test was based on the antisymmetric, Fourier transformed
conductance maps integrated over a range of momenta corresponding to
interband processes, which was argued to display a particular resonant form,
provided the gaps changed sign between the Fermi surface sheets connected by
. The calculation was performed for a single impurity, however, raising
the question of how robust this measure is as a test of sign-changing pairing
in a realistic system with many impurities. Here we reproduce the results of
the previous work within a model with two distinct Fermi surface sheets, and
show explicitly that the previous result, while exact for a single nonmagnetic
scatterer and also in the limit of a dense set of random impurities, can be
difficult to implement for a few dilute impurities. In this case, however,
appropriate isolation of a single impurity is sufficient to recover the
expected result, allowing a robust statement about the gap signs to be made.Comment: 9 pages, 12 figure
- …