1,275 research outputs found

    The Nordic Optical Telescope

    Full text link
    An overview of the Nordic Optical Telescope (NOT) is presented. Emphasis is on current capabilities of direct interest to the scientific user community, including instruments. Educational services and prospects and strategies for the future are discussed briefly as well.Comment: 8 pages, 3 figures, 1 table, Invited talk, To appear in the proceedings "Highlights of Spanish Astrophysics V " Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, July 7-11, 200

    Uvidenheden breder sig

    Get PDF

    Democratic Norms and Political Participation

    Get PDF

    Theoretical study of impurity-induced magnetism in FeSe

    Get PDF
    Experimental evidence suggests that FeSe is close to a magnetic instability, and recent scanning tunneling microscopy (STM) measurements on FeSe multilayer films have revealed stripe order locally pinned near defect sites. Motivated by these findings, we perform a theoretical study of locally induced magnetic order near nonmagnetic impurities in a model relevant for FeSe. We find that relatively weak repulsive impurities indeed are capable of generating short-range magnetism, and explain the driving mechanism for the local order by resonant eg-orbital states. In addition, we investigate the importance of orbital-selective self-energy effects relevant for Hund's metals, and show how the structure of the induced magnetization cloud gets modified by orbital selectivity. Finally, we make concrete connection to STM measurements of iron-based superconductors by symmetry arguments of the induced magnetic order, and the basic properties of the Fe Wannier functions relevant for tunneling spectroscopy.Comment: 10 pages, 4 figure

    The origin of a1g_{1g} and eg_g' orderings in Nax_xCoO2_2

    Full text link
    It has often been suggested that correlation effects suppress the small e_g' Fermi surface pockets of NaxCoO_2 that are predicted by LDA, but absent in ARPES measurements. It appears that within the dynamical mean field theory (DMFT) the ARPES can be reproduced only if the on-site energy of the eg' complex is lower than that of the a1g complex at the one-electron level, prior to the addition of local correlation effects. Current estimates regarding the order of the two orbital complexes range from -200 meV to 315 meV in therms of the energy difference. In this work, we perform density functional theory calculations of this one-electron splitting \Delta= \epsilon_a1g-\epsilon_e_g' for the full two-layer compound, Na2xCo2O4, accounting for the effects of Na ordering, interplanar interactions and octahedral distortion. We find that \epsilon a_1g-\epsilon e_g' is negative for all Na fillings and that this is primarily due to the strongly positive Coulomb field created by Na+ ions in the intercalant plane. This field disproportionately affects the a_1g orbital which protrudes farther upward from the Co plane than the e_g' orbitals. We discuss also the secondary effects of octahedral compression and multi-orbital filling on the value of \Delta as a function of Na content. Our results indicate that if the e_g' pockets are indeed suppressed that can only be due to nonlocal correlation effects beyond the standard DMFT.Comment: 4 pages, 3 figure

    Super sensitivity and super resolution with quantum teleportation

    Get PDF
    We propose a method for quantum enhanced phase estimation based on continuous variable (CV) quantum teleportation. The phase shift probed by a coherent state can be enhanced by repeatedly teleporting the state back to interact with the phase shift again using a supply of two-mode squeezed vacuum states. In this way, both super resolution and super sensitivity can be obtained due to the coherent addition of the phase shift. The protocol enables Heisenberg limited sensitivity and super- resolution given sufficiently strong squeezing. The proposed method could be implemented with current or near-term technology of CV teleportation.Comment: 5 pagers, 3 figure

    The capacity to maintain ion and water homeostasis underlies interspecific variation in Drosophila cold tolerance

    Get PDF
    Many insects, including Drosophila, succumb to the physiological effects of chilling at temperatures well above those causing freezing. Low temperature causes a loss of extracellular ion and water homeostasis in such insects, and chill injuries accumulate. Using an integrative and comparative approach, we examined the role of ion and water balance in insect chilling susceptibility/ tolerance. The Malpighian tubules (MT), of chill susceptible Drosophila species lost [Na+] and [K+] selectivity at low temperatures, which contributed to a loss of Na+ and water balance and a deleterious increase in extracellular [K+]. By contrast, the tubules of chill tolerant Drosophila species maintained their MT ion selectivity, maintained stable extracellular ion concentrations, and thereby avoided injury. The most tolerant species were able to modulate ion balance while in a cold-induced coma and this ongoing physiological acclimation process allowed some individuals of the tolerant species to recover from chill coma during low temperature exposure. Accordingly, differences in the ability to maintain homeostatic control of water and ion balance at low temperature may explain large parts of the wide intra- and interspecific variation in insect chilling tolerance

    Robustness of Quasiparticle Interference Test for Sign-changing Gaps in Multiband Superconductors

    Full text link
    Recently, a test for a sign-changing gap function in a candidate multiband unconventional superconductor involving quasiparticle interference data was proposed. The test was based on the antisymmetric, Fourier transformed conductance maps integrated over a range of momenta q\bf q corresponding to interband processes, which was argued to display a particular resonant form, provided the gaps changed sign between the Fermi surface sheets connected by q\bf q. The calculation was performed for a single impurity, however, raising the question of how robust this measure is as a test of sign-changing pairing in a realistic system with many impurities. Here we reproduce the results of the previous work within a model with two distinct Fermi surface sheets, and show explicitly that the previous result, while exact for a single nonmagnetic scatterer and also in the limit of a dense set of random impurities, can be difficult to implement for a few dilute impurities. In this case, however, appropriate isolation of a single impurity is sufficient to recover the expected result, allowing a robust statement about the gap signs to be made.Comment: 9 pages, 12 figure
    • …
    corecore