17,248 research outputs found
Steady state entanglement of two superconducting qubits engineered by dissipation
We present a scheme for the dissipative preparation of an entangled steady
state of two superconducting qubits in a circuit QED setup. Combining resonator
photon loss, a dissipative process already present in the setup, with an
effective two-photon microwave drive, we engineer an effective decay mechanism
which prepares a maximally entangled state of the two qubits. This state is
then maintained as the steady state of the driven, dissipative evolution. The
performance of the dissipative state preparation protocol is studied
analytically and verified numerically. In view of the experimental
implementation of the presented scheme we investigate the effects of potential
experimental imperfections and show that our scheme is robust to small
deviations in the parameters. We find that high fidelities with the target
state can be achieved both with state-of-the-art 3D, as well as with the more
commonly used 2D transmons. The promising results of our study thus open a
route for the demonstration of an entangled steady state in circuit QED.Comment: 12 pages, 5 figures; close to published versio
Master equation approach to computing RVB bond amplitudes
We describe a "master equation" analysis for the bond amplitudes h(r) of an
RVB wavefunction. Starting from any initial guess, h(r) evolves (in a manner
dictated by the spin hamiltonian under consideration) toward a steady-state
distribution representing an approximation to the true ground state. Unknown
transition coefficients in the master equation are treated as variational
parameters. We illustrate the method by applying it to the J1-J2
antiferromagnetic Heisenberg model. Without frustration (J2=0), the amplitudes
are radially symmetric and fall off as 1/r^3 in the bond length. As the
frustration increases, there are precursor signs of columnar or plaquette VBS
order: the bonds preferentially align along the axes of the square lattice and
weight accrues in the nearest-neighbour bond amplitudes. The Marshall sign rule
holds over a large range of couplings, J2/J1 < 0.418. It fails when the r=(2,1)
bond amplitude first goes negative, a point also marked by a cusp in the ground
state energy. A nonrigourous extrapolation of the staggered magnetic moment
(through this point of nonanalyticity) shows it vanishing continuously at a
critical value J2/J1 = 0.447. This may be preempted by a first-order transition
to a state of broken translational symmetry.Comment: 8 pages, 7 figure
A Hybrid Long-Distance Entanglement Distribution Protocol
We propose a hybrid (continuous-discrete variable) quantum repeater protocol
for distribution of entanglement over long distances. Starting from entangled
states created by means of single-photon detection, we show how entangled
coherent state superpositions, also known as `Schr\"odinger cat states', can be
generated by means of homodyne detection of light. We show that
near-deterministic entanglement swapping with such states is possible using
only linear optics and homodyne detectors, and we evaluate the performance of
our protocol combining these elements.Comment: 4 pages, 3 figure
Macroscopic Entanglement and Phase Transitions
This paper summarises the results of our research on macroscopic entanglement
in spin systems and free Bosonic gases. We explain how entanglement can be
observed using entanglement witnesses which are themselves constructed within
the framework of thermodynamics and thus macroscopic observables. These
thermodynamical entanglement witnesses result in bounds on macroscopic
parameters of the system, such as the temperature, the energy or the
susceptibility, below which entanglement must be present. The derived bounds
indicate a relationship between the occurrence of entanglement and the
establishment of order, possibly resulting in phase transition phenomena. We
give a short overview over the concepts developed in condensed matter physics
to capture the characteristics of phase transitions in particular in terms of
order and correlation functions. Finally we want to ask and speculate whether
entanglement could be a generalised order concept by itself, relevant in
(quantum induced) phase transitions such as BEC, and that taking this view may
help us to understand the underlying process of high-T superconductivity.Comment: 9 pages, 7 figures (color), Submitted to special OSID issue,
Proceedings of the 38th Symposium on Mathematical Physics - Quantum
Entanglement & Geometry, Torun (Poland), June 200
Using superlattice potentials to probe long-range magnetic correlations in optical lattices
In Pedersen et al. (2011) we proposed a method to utilize a temporally
dependent superlattice potential to mediate spin-selective transport, and
thereby probe long and short range magnetic correlations in optical lattices.
Specifically this can be used for detecting antiferromagnetic ordering in
repulsive fermionic optical lattice systems, but more generally it can serve as
a means of directly probing correlations among the atoms by measuring the mean
value of an observable, the number of double occupied sites. Here, we provide a
detailed investigation of the physical processes which limit the effectiveness
of this "conveyer belt method". Furthermore we propose a simple ways to improve
the procedure, resulting in an essentially perfect (error-free) probing of the
magnetic correlations. These results shows that suitably constructed
superlattices constitute a promising way of manipulating atoms of different
spin species as well as probing their interactions.Comment: 12 pages, 9 figure
Interface of the polarizable continuum model of solvation with semi-empirical methods in the GAMESS program
An interface between semi-empirical methods and the polarized continuum model
(PCM) of solvation successfully implemented into GAMESS following the approach
by Chudinov et al (Chem. Phys. 1992, 160, 41). The interface includes energy
gradients and is parallelized. For large molecules such as ubiquitin a
reasonable speedup (up to a factor of six) is observed for up to 16 cores. The
SCF convergence is greatly improved by PCM for proteins compared to the gas
phase
Can we replicate the findings of EEF trials using school level comparative interrupted time series evaluations? Non-technical report
This report focuses on whether one particular non-experimental method can reproduce the results from experimental evaluations: the comparative interrupted time series (CITS) design. The basic idea is to compare the way in which outcomes in the treatment group deviate from trend after an intervention is introduced, relative to the way in which outcomes in the control group deviate from trend at the same point in time. Under certain assumptions, the difference between these deviations can be interpreted as the effect of the intervention
Universal Approach to Optimal Photon Storage in Atomic Media
We present a universal physical picture for describing storage and retrieval
of photon wave packets in a Lambda-type atomic medium. This physical picture
encompasses a variety of different approaches to pulse storage ranging from
adiabatic reduction of the photon group velocity and pulse-propagation control
via off-resonant Raman fields to photon-echo based techniques. Furthermore, we
derive an optimal control strategy for storage and retrieval of a photon wave
packet of any given shape. All these approaches, when optimized, yield
identical maximum efficiencies, which only depend on the optical depth of the
medium.Comment: 4 pages, 3 figures. V2: major changes in presentation (title,
abstract, main text), simplification of derivations, new references. V3:
minor changes - final version as published in Phys. Rev. Let
ALFA & 3D: integral field spectroscopy with adaptive optics
One of the most important techniques for astrophysics with adaptive optics is
the ability to do spectroscopy at diffraction limited scales. The extreme
difficulty of positioning a faint target accurately on a very narrow slit can
be avoided by using an integral field unit, which provides the added benefit of
full spatial coverage. During 1998, working with ALFA and the 3D integral field
spectrometer, we demonstrated the validity of this technique by extracting and
distinguishing spectra from binary stars separated by only 0.26". The
combination of ALFA & 3D is also ideally suited to imaging distant galaxies or
the nuclei of nearby ones, as its field of view can be changed between
1.2"x1.2" and 4"x4", depending on the pixel scale chosen. In this contribution
we present new results both on galactic targets, namely young stellar objects,
as well as extra-galactic objects including a Seyfert and a starburst nucleus.Comment: SPIE meeting 4007 on Adaptive Optical Systems Technology, March 200
- …