500 research outputs found
Non-Linear Effects in Resonant Tunneling; Bistabilities and Self-Sustained Oscillating Currents
We study non-linear phenomena in double barrier heterostructures. Systems in
3D under the effect of an external magnetic field along the current and 1D
systems are analyzed. Non-linearities are reflected in the I-V characteristic
curve as bistabilities, instabilities and time dependent oscillations of the
currents. The nature of the non-linear behavior depends upon the parameters
that define the system.Comment: 3 pages, 2 figures, accepted for publication in Superlattices and
Microstructure
Inelastic Quantum Transport and Peierls-like Mechanism in Carbon Nanotubes
We report on a theoretical study of inelastic quantum transport in
carbon nanotubes. By using a many-body description of the electron-phonon
interaction in Fock space, a novel mechanism involving optical phonon emission
(absorption) is shown to induce an unprecedented energy gap opening at half the
phonon energy, , above (below) the charge neutrality point.
This mechanism, which is prevented by Pauli blocking at low bias voltages, is
activated at bias voltages in the order of .Comment: 4 pages, 4 figure
Switching the sign of photon induced exchange interactions in semiconductor microcavities with finite quality factors
We investigate coupling of localized spins in a semiconductor quantum dot
embedded in a microcavity with a finite quality factor. The lowest cavity mode
and the quantum dot exciton are coupled forming a polariton, whereas excitons
interact with localized spins via exchange. The finite quality of the cavity Q
is incorporated in the model Hamiltonian by adding an imaginary part to the
photon frequency. The Hamiltonian, which treats photons, spins and excitons
quantum mechanically, is solved exactly. Results for a single polariton clearly
demonstrate the existence of a resonance, sharper as the temperature decreases,
that shows up as an abrupt change between ferromagnetic and antiferromagnetic
indirect anisotropic exchange interaction between localized spins. The origin
of this spin-switching finite-quality-factor effect is discussed in detail
remarking on its dependence on model parameters, i.e., light-matter coupling,
exchange interaction between impurities, detuning and quality factor. For
parameters corresponding to the case of a (Cd,Mn)Te quantum dot, the resonance
shows up for Q around 70 and detuning around 10 meV. In addition, we show that,
for such a quantum dot, and the best cavities actually available (quality
factors better than 200) the exchange interaction is scarcely affected.Comment: 7 figures, submitted to PR
Polarized currents and spatial separation of Kondo state: NRG study of spin-orbital effect in a double QD
A double quantum dot device, connected to two channels that only see each
other through interdot Coulomb repulsion, is analyzed using the numerical
renormalization group technique. By using a two-impurity Anderson model, and
parameter values obtained from experiment [S. Amasha {\it et al.}, Phys. Rev.
Lett. {\bf 110}, 046604 (2013)], it is shown that, by applying a moderate
magnetic field, and adjusting the gate potential of each quantum dot, opposing
spin polarizations are created in each channel. Furthermore, through a well
defined change in the gate potentials, the polarizations can be reversed. This
polarization effect is clearly associated to a spin-orbital Kondo state having
a Kondo peak that originates from spatially separated parts of the device. This
fact opens the exciting possibility of experimentally probing the internal
structure of an SU(2) Kondo state.Comment: 4+ pages; 4 figures; supplemental material (1 page, 2 figures
Transport properties of a two impurity system: a theoretical approach
A system of two interacting cobalt atoms, at varying distances, was studied
in a recent scanning tunneling microscope experiment by Bork et. al.[Nature
Phys. 7, 901 (2011)]. We propose a microscopic model that explains, for all
experimentally analyzed interatomic distances, the physics observed in these
experiments. Our proposal is based on the two-impurity Anderson model, with the
inclusion of a two-path geometry for charge transport. This many-body system is
treated in the finite-U slave boson mean-field approximation and the
logarithmic-discretization embedded-cluster approximation. We physically
characterize the different charge transport regimes of this system at various
interatomic distances and show that, as in the experiments, the features
observed in the transport properties depend on the presence of two impurities
but also on the existence of two conducting channels for electron transport. We
interpret the splitting observed in the conductance as the result of the
hybridization of the two Kondo resonances associated with each impurity.Comment: 5 pages, 5 figure
- …