4 research outputs found
Mechanism Elucidation of the <i>cisātrans</i> Isomerization of an Azole RutheniumāNitrosyl Complex and Its Osmium Counterpart
Synthesis
and X-ray diffraction structures of <i>cis</i> and <i>trans</i> isomers of ruthenium and osmium metal complexes of
general formulas (<i>n</i>Bu<sub>4</sub>N)Ā[<i>cis</i>-MCl<sub>4</sub>(NO)Ā(Hind)], where M = Ru (<b>1</b>) and Os
(<b>3</b>), and (<i>n</i>Bu<sub>4</sub>N)Ā[<i>trans</i>-MCl<sub>4</sub>(NO)Ā(Hind)], where M = Ru (<b>2</b>) and Os (<b>4</b>) and Hind = 1<i>H</i>-indazole
are reported. Interconversion between <i>cis</i> and <i>trans</i> isomers at high temperatures (80ā130 Ā°C)
has been observed and studied by NMR spectroscopy. Kinetic data indicate
that isomerizations correspond to reversible first order reactions.
The rates of isomerization reactions even at 110 Ā°C are very
low with rate constants of 10<sup>ā5</sup> s<sup>ā1</sup> and 10<sup>ā6</sup> s<sup>ā1</sup> for ruthenium and
osmium complexes, respectively, and the estimated rate constants of
isomerization at room temperature are of ca. 10<sup>ā10</sup> s<sup>ā1</sup>. The activation parameters, which have been
obtained from fitting the reaction rates at different temperatures
to the Eyring equation for ruthenium [Ī<i>H</i><sub><i>cisātrans</i></sub><sup>ā”</sup> <i>=</i> 122.8 Ā± 1.3;
Ī<i><i>H</i></i><sub><i>transācis</i></sub><sup>ā”</sup> <i>=</i> 138.8 Ā± 1.0 kJ/mol; Ī<i><i>S</i></i><sub><i>cisātrans</i></sub><sup>ā”</sup> <i>=</i> ā18.7
Ā± 3.6; Ī<i><i>S</i></i><sub><i>transācis</i></sub><sup>ā”</sup> <i>=</i> 31.8 Ā± 2.7
J/(molĀ·K)] and osmium [Ī<i>H</i><sub><i>cisātrans</i></sub><sup>ā”</sup> <i>=</i> 200.7 Ā± 0.7;
Ī<i><i>H</i></i><sub><i>transācis</i></sub><sup>ā”</sup> <i>=</i> 168.2 Ā± 0.6 kJ/mol; Ī<i><i>S</i></i><sub><i>cisātrans</i></sub><sup>ā”</sup> <i>=</i> 142.7
Ā± 8.9; Ī<i><i>S</i></i><sub><i>transācis</i></sub><sup>ā”</sup> <i>=</i> 85.9 Ā± 3.9
J/(molĀ·K)] reflect the inertness of these systems. The entropy
of activation for the osmium complexes is highly positive and suggests
the dissociative mechanism of isomerization. In the case of ruthenium,
the activation entropy for the <i>cis</i> to <i>trans</i> isomerization is negative [ā18.6 J/(molĀ·K)], while being
positive [31.0 J/(molĀ·K)] for the <i>trans</i> to <i>cis</i> conversion. The thermodynamic parameters for <i>cis</i> to <i>trans</i> isomerization of [RuCl<sub>4</sub>(NO)Ā(Hind)]<sup>ā</sup>, viz. Ī<i><i>H</i>Ā°</i> = 13.5 Ā± 1.5 kJ/mol and Ī<i>S</i>Ā° = ā5.2 Ā± 3.4 J/(molĀ·K) indicate
the low difference between the energies of <i>cis</i> and <i>trans</i> isomers. The theoretical calculation has been carried
out on isomerization of ruthenium complexes with DFT methods. The
dissociative, associative, and intramolecular twist isomerization
mechanisms have been considered. The value for the activation energy
found for the dissociative mechanism is in good agreement with experimental
activation enthalpy. Electrochemical investigation provides further
evidence for higher reactivity of ruthenium complexes compared to
that of osmium counterparts and shows that intramolecular electron
transfer reactions do not affect the isomerization process. A dissociative
mechanism of <i>cis</i>ā<i>trans</i> isomerization
has been proposed for both ruthenium and osmium complexes
Striking Difference in Antiproliferative Activity of Ruthenium- and Osmium-Nitrosyl Complexes with Azole Heterocycles
Ruthenium nitrosyl complexes of the
general formulas (cation)<sup>+</sup>[<i>cis</i>-RuCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole
(Hind) (<b>1c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (Hpz) (<b>2c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>bzim)<sup>+</sup>, Hazole
= 1<i>H</i>-benzimidazole (Hbzim) (<b>3c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>im)<sup>+</sup>, Hazole = 1<i>H</i>-imidazole (Him) (<b>4c</b>) and (cation)<sup>+</sup>[<i>trans</i>-RuCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>,
where (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole
= 1<i>H</i>-indazole (<b>1t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole
(<b>2t</b>), as well as osmium analogues of the general formulas
(cation)<sup>+</sup>[<i>cis</i>-OsCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = (<i>n</i>-Bu<sub>4</sub>N)<sup>+</sup>, Hazole =1<i>H</i>-indazole (<b>5c</b>), 1<i>H</i>-pyrazole (<b>6c</b>), 1<i>H</i>-benzimidazole (<b>7c</b>), 1<i>H</i>-imidazole
(<b>8c</b>), (cation)<sup>+</sup> = Na<sup>+</sup>; Hazole =1<i>H</i>-indazole (<b>9c</b>), 1<i>H</i>-benzimidazole
(<b>10c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole (<b>11c</b>),
(cation)<sup>+</sup> = H<sub>2</sub>pz<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (<b>12c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>im)<sup>+</sup>, Hazole = 1<i>H</i>-imidazole (<b>13c</b>), and (cation)<sup>+</sup>[<i>trans</i>-OsCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = <i>n</i>-Bu<sub>4</sub>N<sup>+</sup>, Hazole = 1<i>H</i>-indazole (<b>5t</b>), 1<i>H</i>-pyrazole
(<b>6t</b>), (cation)<sup>+</sup> = Na<sup>+</sup>, Hazole =
1<i>H</i>-indazole (<b>9t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole
(<b>11t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (<b>12t</b>), have
been synthesized. The compounds have been comprehensively characterized
by elemental analysis, ESI mass spectrometry, spectroscopic techniques
(IR, UVāvis, 1D and 2D NMR) and X-ray crystallography (<b>1c</b>Ā·CHCl<sub>3</sub>, <b>1t</b>Ā·CHCl<sub>3</sub>, <b>2t</b>, <b>3c</b>, <b>6c</b>, <b>6t</b>, <b>8c</b>). The antiproliferative activity of water-soluble
compounds (<b>1c</b>, <b>1t</b>, <b>3c</b>, <b>4c</b> and <b>9c</b>, <b>9t</b>, <b>10c</b>, <b>11c</b>, <b>11t</b>, <b>12c</b>, <b>12t</b>, <b>13c</b>) in the human cancer cell lines A549 (nonsmall cell lung
carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma)
has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism,
and azole heterocycle identity on cytotoxic potency and cell line
selectivity have been elucidated. Ruthenium complexes (<b>1c</b>, <b>1t</b>, <b>3c</b>, and <b>4c</b>) yielded
IC<sub>50</sub> values in the low micromolar concentration range.
In contrast to most pairs of analogous ruthenium and osmium complexes
known, they turned out to be considerably more cytotoxic than chemically
related osmium complexes (<b>9c</b>, <b>9t</b>, <b>10c</b>, <b>11c</b>, <b>11t</b>, <b>12c</b>, <b>12t</b>, <b>13c</b>). The IC<sub>50</sub> values of Os/Ru
homologs differ by factors (Os/Ru) of up to ā¼110 and ā¼410
in CH1 and SW480 cells, respectively. ESI-MS studies revealed that
ascorbic acid may activate the ruthenium complexes leading to hydrolysis
of one MāCl bond, whereas the osmium analogues tend to be inert.
The interaction with myoglobin suggests nonselective adduct formation;
i.e., proteins may act as carriers for these compounds
Ruthenium-Nitrosyl Complexes with Glycine, lāAlanine, lāValine, lāProline, dāProline, lāSerine, lāThreonine, and lāTyrosine: Synthesis, Xāray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity
The
reactions of [RuĀ(NO)ĀCl<sub>5</sub>]<sup>2ā</sup> with glycine
(Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline
(d-Pro), l-serine (l-Ser), l-threonine
(l-Thr), and l-tyrosine (l-Tyr) in <i>n</i>-butanol or <i>n</i>-propanol afforded eight
new complexes (<b>1</b>ā<b>8</b>) of the general
formula [RuCl<sub>3</sub>(AAāH)Ā(NO)]<sup>ā</sup>, where
AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively.
The compounds were characterized by elemental analysis, electrospray
ionization mass spectrometry (ESI-MS), <sup>1</sup>H NMR, UVāvisible
and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography.
X-ray crystallography studies have revealed that in all cases the
same isomer type (from three theoretically possible) was isolated,
namely <i>mer</i>(Cl),<i>trans</i>(NO,O)-[RuCl<sub>3</sub>(AAāH)Ā(NO)], as was also recently reported for osmium
analogues with Gly, l-Pro, and d-Pro (see <i>Z. Anorg. Allg. Chem.</i> <b>2013</b>, <i>639</i>, 1590ā1597). Compounds <b>1</b>, <b>4</b>, <b>5</b>, and <b>8</b> were investigated by ESI-MS with regard
to their stability in aqueous solution and reactivity toward sodium
ascorbate. In addition, cell culture experiments in three human cancer
cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian
carcinoma), and SW480 (colon carcinoma), were performed, and the results
are discussed in conjunction with the lipophilicity of compounds
Striking Difference in Antiproliferative Activity of Ruthenium- and Osmium-Nitrosyl Complexes with Azole Heterocycles
Ruthenium nitrosyl complexes of the
general formulas (cation)<sup>+</sup>[<i>cis</i>-RuCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole
(Hind) (<b>1c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (Hpz) (<b>2c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>bzim)<sup>+</sup>, Hazole
= 1<i>H</i>-benzimidazole (Hbzim) (<b>3c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>im)<sup>+</sup>, Hazole = 1<i>H</i>-imidazole (Him) (<b>4c</b>) and (cation)<sup>+</sup>[<i>trans</i>-RuCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>,
where (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole
= 1<i>H</i>-indazole (<b>1t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole
(<b>2t</b>), as well as osmium analogues of the general formulas
(cation)<sup>+</sup>[<i>cis</i>-OsCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = (<i>n</i>-Bu<sub>4</sub>N)<sup>+</sup>, Hazole =1<i>H</i>-indazole (<b>5c</b>), 1<i>H</i>-pyrazole (<b>6c</b>), 1<i>H</i>-benzimidazole (<b>7c</b>), 1<i>H</i>-imidazole
(<b>8c</b>), (cation)<sup>+</sup> = Na<sup>+</sup>; Hazole =1<i>H</i>-indazole (<b>9c</b>), 1<i>H</i>-benzimidazole
(<b>10c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole (<b>11c</b>),
(cation)<sup>+</sup> = H<sub>2</sub>pz<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (<b>12c</b>), (cation)<sup>+</sup> = (H<sub>2</sub>im)<sup>+</sup>, Hazole = 1<i>H</i>-imidazole (<b>13c</b>), and (cation)<sup>+</sup>[<i>trans</i>-OsCl<sub>4</sub>(NO)Ā(Hazole)]<sup>ā</sup>, where (cation)<sup>+</sup> = <i>n</i>-Bu<sub>4</sub>N<sup>+</sup>, Hazole = 1<i>H</i>-indazole (<b>5t</b>), 1<i>H</i>-pyrazole
(<b>6t</b>), (cation)<sup>+</sup> = Na<sup>+</sup>, Hazole =
1<i>H</i>-indazole (<b>9t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>ind)<sup>+</sup>, Hazole = 1<i>H</i>-indazole
(<b>11t</b>), (cation)<sup>+</sup> = (H<sub>2</sub>pz)<sup>+</sup>, Hazole = 1<i>H</i>-pyrazole (<b>12t</b>), have
been synthesized. The compounds have been comprehensively characterized
by elemental analysis, ESI mass spectrometry, spectroscopic techniques
(IR, UVāvis, 1D and 2D NMR) and X-ray crystallography (<b>1c</b>Ā·CHCl<sub>3</sub>, <b>1t</b>Ā·CHCl<sub>3</sub>, <b>2t</b>, <b>3c</b>, <b>6c</b>, <b>6t</b>, <b>8c</b>). The antiproliferative activity of water-soluble
compounds (<b>1c</b>, <b>1t</b>, <b>3c</b>, <b>4c</b> and <b>9c</b>, <b>9t</b>, <b>10c</b>, <b>11c</b>, <b>11t</b>, <b>12c</b>, <b>12t</b>, <b>13c</b>) in the human cancer cell lines A549 (nonsmall cell lung
carcinoma), CH1 (ovarian carcinoma), and SW480 (colon adenocarcinoma)
has been assayed. The effects of metal (Ru vs Os), cis/trans isomerism,
and azole heterocycle identity on cytotoxic potency and cell line
selectivity have been elucidated. Ruthenium complexes (<b>1c</b>, <b>1t</b>, <b>3c</b>, and <b>4c</b>) yielded
IC<sub>50</sub> values in the low micromolar concentration range.
In contrast to most pairs of analogous ruthenium and osmium complexes
known, they turned out to be considerably more cytotoxic than chemically
related osmium complexes (<b>9c</b>, <b>9t</b>, <b>10c</b>, <b>11c</b>, <b>11t</b>, <b>12c</b>, <b>12t</b>, <b>13c</b>). The IC<sub>50</sub> values of Os/Ru
homologs differ by factors (Os/Ru) of up to ā¼110 and ā¼410
in CH1 and SW480 cells, respectively. ESI-MS studies revealed that
ascorbic acid may activate the ruthenium complexes leading to hydrolysis
of one MāCl bond, whereas the osmium analogues tend to be inert.
The interaction with myoglobin suggests nonselective adduct formation;
i.e., proteins may act as carriers for these compounds